CrowdScreen

Aditya G. Parameswaran, Hector Garcia-Molina, Hyunjung Park, Neoklis Polyzotis, Aditya Ramesh, Jennifer Widom
2012 Proceedings of the 2012 international conference on Management of Data - SIGMOD '12  
Given a set of data items, we consider the problem of filtering them based on a set of properties that can be verified by humans. This problem is commonplace in crowdsourcing applications, and yet, to our knowledge, no one has considered the formal optimization of this problem. (Typical solutions use heuristics to solve the problem.) We formally state a few different variants of this problem. We develop deterministic and probabilistic algorithms to optimize the expected cost (i.e., number of
more » ... (i.e., number of questions) and expected error. We experimentally show that our algorithms provide definite gains with respect to other strategies. Our algorithms can be applied in a variety of crowdsourcing scenarios and can form an integral part of any query processor that uses human computation.
doi:10.1145/2213836.2213878 dblp:conf/sigmod/ParameswaranGPPRW12 fatcat:fsqmem5vnzbznp6pacsd4db5ly