ON DIMENSION OF NON-LOCAL BIFURCATIONAL PROBLEMS

D. TURAEV
1996 International Journal of Bifurcation and Chaos in Applied Sciences and Engineering  
An analogue of the center manifold theory is proposed for non-local bifurcations of homoand heteroclinic contours. In contrast with the local bifurcation theory it is shown that the dimension of non-local bifurcational problems is determined by the three different integers: the geometrical dimension d g which is equal to the dimension of a non-local analogue of the center manifold, the critical dimension de which is equal to the difference between the dimension of phase space and the sum of
more » ... and the sum of dimensions of leaves of associated strong-stable and strongunstable foliations, and the Lyapunov dimension d L which is equal to the maximal possible number of zero Lyapunov exponents for the orbits arising at the bifurcation. For a wide class of bifurcational problems (the so-called semi-local bifurcations) these three values are shown to be effectively computed. For the orbits arising at the bifurcations, effective restrictions for the maximal and minimal numbers of positive and negative Lyapunov exponents (correspondingly, for the maximal and minimal possible dimensions of the stable and unstable manifolds) are obtained, involving the values de and dL. A connection with the problem of hyperchaos is discussed.
doi:10.1142/s0218127496000515 fatcat:ikjw7piuofdcpfbaafx3g6td54