The influence of cactus spine surface structure on puncture performance and anchoring ability is tuned for ecology

S. B. Crofts, P. S. L. Anderson
2018 Proceedings of the Royal Society of London. Biological Sciences  
Research Cite this article: Crofts SB, Anderson PSL. 2018 The influence of cactus spine surface structure on puncture performance and anchoring ability is tuned for ecology. Proc. R. Soc. B 285: 20182280. http://dx.Spines are common morphological features found in almost all major biological groups offering an opportunity to explore large-scale evolutionary convergence across disparate clades. As an example, opuntioid cacti have spines with barbed ornamentation that is remarkably similar in
more » ... and scale to that found on porcupine quills, suggesting specific biomechanical convergence across the animal and plant kingdoms. While the mechanics of porcupine quills as defensive mechanisms has been previously tested, the mechanics of cactus spines (which have evolved to fill a number of functions including defence, climbing and dispersal) has not been characterized. Here we study the puncturing and anchoring ability of six species of cactus, including both barbed and non-barbed spines. We found that barbed spines require less work to puncture a variety of targets than non-barbed spines. Barbed spines also require more work than non-barbed spines to withdraw from biological materials, owing to their barbs engaging with tissue fibres. These results closely match those found previously for barbed versus non-barbed porcupine quills, implying biomechanical convergence. The variation in performance of barbed versus non-barbed spines, as well as between barbed spines from different species, is probably tied to the diversity of ecological functions of cactus spines.
doi:10.1098/rspb.2018.2280 pmid:30464068 fatcat:gsllu3uqrnepblgomke2h4c4am