Hydrocracking of Heavy Fischer–Tropsch Wax Distillation Residues and Its Blends with Vacuum Gas Oil Using Phonolite-Based Catalysts

Jakub Frątczak, Héctor de Paz Carmona, Zdeněk Tišler, José M. Hidalgo Herrador, Zahra Gholami
2021 Molecules  
The Fischer–Tropsch heavy fraction is a potential feedstock for transport-fuels production through co-processing with fossil fuel fraction. However, there is still the need of developing new and green catalytic materials able to process this feedstock into valuable outputs. The present work studies the co-hydrocracking of the Fisher–Tropsch heavy fraction (FT-res.) with vacuum gas oil (VGO) at different ratios (FT-res. 9:1 VGO, FT-res. 7:3 VGO, and FT-res. 5:5 VGO) using phonolite-based
more » ... s (5Ni10W/Ph, 5Ni10Mo/Ph, and 5Co10Mo/Ph), paying attention to the overall conversion, yield, and selectivity of the products and properties. The co-processing experiments were carried out in an autoclave reactor at 450 °C, under 50 bars for 1 and 2 h. The phonolite-based catalysts were active in the hydrocracking of FT-res.:VGO mixtures, presenting different yields to gasoline, diesel, and jet fuel fractions, depending on the time of reaction and type of catalyst. Our results enable us to define the most suitable metal transition composition for the phonolite-based support as a hydrocracking catalyst.
doi:10.3390/molecules26237172 pmid:34885761 fatcat:5x3bksg5ufflhfduvcrhyg5lpy