Scalable, memory efficient, high-speed IP lookup algorithms

R. Sangireddy, N. Futamura, S. Aluru, A.K. Somani
2005 IEEE/ACM Transactions on Networking  
One of the central issues in router performance is IP address lookup based on longest prefix matching. IP address lookup algorithms can be evaluated on a number of metrics-lookup time, update time, memory usage, and to a less important extent, the time to construct the data structure used to support lookups and updates. Many of the existing methods are geared toward optimizing a specific metric, and do not scale well with the ever expanding routing tables and the forthcoming IPv6 where the IP
more » ... dresses are 128 bits long. In contrast, our effort is directed at simultaneously optimizing multiple metrics and provide solutions that scale to IPv6, with its longer addresses and much larger routing tables. In this paper, we present two IP address lookup schemes-Elevator-Stairs algorithm and logW-Elevators algorithm. For a routing table with prefixes, The Elevator-Stairs algorithm uses optimal ( ) memory, and achieves better lookup and update times than other methods with similar memory requirements. The logW-Elevators algorithm gives (log ) lookup time, where is the length of an IP address, while improving upon update time and memory usage. Experimental results using the MAE-West router with 29 487 prefixes show that the Elevator-Stairs algorithm gives an average throughput of 15.7 Million lookups per second (Mlps) using 459 KB of memory, and the logW-Elevators algorithm gives an average throughput of 21.41 Mlps with a memory usage of 1259 KB.
doi:10.1109/tnet.2005.852878 fatcat:yscpuyoribhhngbhcvhdzxax2y