EdgeDRNN: Recurrent Neural Network Accelerator for Edge Inference

Chang Gao, Antonio Rios-Navarro, Xi Chen, Shih-Chii Liu, Tobi Delbruck
2020 IEEE Journal on Emerging and Selected Topics in Circuits and Systems  
Low-latency, low-power portable recurrent neural network (RNN) accelerators offer powerful inference capabilities for real-time applications such as IoT, robotics, and human-machine interaction. We propose a lightweight Gated Recurrent Unit (GRU)-based RNN accelerator called EdgeDRNN that is optimized for low-latency edge RNN inference with batch size of 1. EdgeDRNN adopts the spiking neural network inspired delta network algorithm to exploit temporal sparsity in RNNs. Weights are stored in
more » ... pensive DRAM which enables EdgeDRNN to compute large multi-layer RNNs on the most inexpensive FPGA. The sparse updates reduce DRAM weight memory access by a factor of up to 10x and the delta can be varied dynamically to trade-off between latency and accuracy. EdgeDRNN updates a 5 million parameter 2-layer GRU-RNN in about 0.5ms. It achieves latency comparable with a 92W Nvidia 1080 GPU. It outperforms NVIDIA Jetson Nano, Jetson TX2 and Intel Neural Compute Stick 2 in latency by 5X. For a batch size of 1, EdgeDRNN achieves a mean effective throughput of 20.2GOp/s and a wall plug power efficiency that is over 4X higher than the commercial edge AI platforms.
doi:10.1109/jetcas.2020.3040300 fatcat:6po265l6rrh4zd35ymyzvj3mce