A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2015; you can also visit the original URL.
The file type is application/pdf
.
The doubling map with asymmetrical holes
2013
Ergodic Theory and Dynamical Systems
AbstractLet$0\lt a\lt b\lt 1$and let$T$be the doubling map. Set$ \mathcal{J} (a, b): = \{ x\in [0, 1] : {T}^{n} x\not\in (a, b), n\geq 0\} $. In this paper we completely characterize the holes$(a, b)$for which any of the following scenarios hold: (i)$ \mathcal{J} (a, b)$contains a point$x\in (0, 1)$; (ii)$ \mathcal{J} (a, b)\cap [\delta , 1- \delta ] $is infinite for any fixed$\delta \gt 0$; (iii)$ \mathcal{J} (a, b)$is uncountable of zero Hausdorff dimension; (iv)$ \mathcal{J} (a, b)$is of
doi:10.1017/etds.2013.98
fatcat:4gldcnkmrjbzzfrwwc25dfuwia