A Lightweight Authentication Mechanism for M2M Communications in Industrial IoT Environment

Alireza Esfahani, Georgios Mantas, Rainer Matischek, Firooz B. Saghezchi, Jonathan Rodriguez, Ani Bicaku, Silia Maksuti, Markus Tauber, Christoph Schmittner, Joaquim Bastos
2017 IEEE Internet of Things Journal  
In the emerging Industrial IoT era, Machine-to-Machine (M2M) communication technology is considered as a key underlying technology for building Industrial IoT environments where devices (e.g., sensors, actuators, gateways) are enabled to exchange information with each other in an autonomous way without human intervention. However, most of the existing M2M protocols that can be also used in the Industrial IoT domain provide security mechanisms based on asymmetric cryptography resulting in high
more » ... mputational cost. As a consequence, the resource-constrained IoT devices are not able to support them appropriately and thus, many security issues arise for the Industrial IoT environment. Therefore, lightweight security mechanisms are required for M2M communications in Industrial IoT in order to reach its full potential. As a step towards this direction, in this paper, we propose a lightweight authentication mechanism, based only on hash and XOR operations, for M2M communications in Industrial IoT environment. The proposed mechanism is characterized by low computational cost, communication and storage overhead, while achieving mutual authentication, session key agreement, device's identity confidentiality, and resistance against the following attacks: replay attack, man-in-the-middle attack, impersonation attack, and modification attack.
doi:10.1109/jiot.2017.2737630 fatcat:le73eaaudvhs5j6q6pecszkl6a