Digital-Twin-Enabled 6G: Vision, Architectural Trends, and Future Directions [article]

Latif U. Khan, Walid Saad, Dusit Niyato, Zhu Han, Choong Seon Hong
2021 arXiv   pre-print
Internet of Everything (IoE) applications such as haptics, human-computer interaction, and extended reality, using the sixth-generation (6G) of wireless systems have diverse requirements in terms of latency, reliability, data rate, and user-defined performance metrics. Therefore, enabling IoE applications over 6G requires a new framework that can be used to manage, operate, and optimize the 6G wireless system and its underlying IoE services. Such a new framework for 6G can be based on digital
more » ... ins. Digital twins use a virtual representation of the 6G physical system along with the associated algorithms (e.g., machine learning, optimization), communication technologies (e.g., millimeter-wave and terahertz communication), computing systems (e.g., edge computing and cloud computing), as well as privacy and security-related technologists (e.g., blockchain). First, we present the key design requirements for enabling 6G through the use of a digital twin. Next, the architectural components and trends such as edge-based twins, cloud-based-twins, and edge-cloud-based twins are presented. Furthermore, we provide a comparative description of various twins. Finally, we outline and recommend guidelines for several future research directions.
arXiv:2102.12169v2 fatcat:bb4x22q2djf6bdvtlvy3wx46z4