A singular initial value problem for some functional differential equations

Ravi P. Agarwal, Donal O'Regan, Oleksandr E. Zernov
2004 Journal of Applied Mathematics and Stochastic Analysis  
For the initial value problemtrx′(t)=at+b1x(t)+b2x(q1t)+b3trx′(q2t)+φ(t,x(t),x(q1t),x′(t),x′(q2t)),x(0)=0, wherer>1,0<qi≤1,i∈{1,2}, we find a nonempty set of continuously differentiable solutionsx:(0,ρ]→ℝ, each of which possesses nice asymptotic properties whent→+0.
doi:10.1155/s1048953304405012 fatcat:inzfovuyz5fp7ofnldz5udxuba