Discriminative multi-view Privileged Information learning for image re-ranking [article]

Jun Li, Chang Xu, Wankou Yang, Changyin Sun, Dacheng Tao, Hong Zhang
<span title="2018-07-26">2018</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Conventional multi-view re-ranking methods usually perform asymmetrical matching between the region of interest (ROI) in the query image and the whole target image for similarity computation. Due to the inconsistency in the visual appearance, this practice tends to degrade the retrieval accuracy particularly when the image ROI, which is usually interpreted as the image objectness, accounts for a smaller region in the image. Since Privileged Information (PI), which can be viewed as the image
more &raquo; ... r, enables well characterizing the image objectness, we are aiming at leveraging PI for further improving the performance of the multi-view re-ranking accuracy in this paper. Towards this end, we propose a discriminative multi-view re-ranking approach in which both the original global image visual contents and the local auxiliary PI features are simultaneously integrated into a unified training framework for generating the latent subspaces with sufficient discriminating power. For the on-the-fly re-ranking, since the multi-view PI features are unavailable, we only project the original multi-view image representations onto the latent subspace, and thus the re-ranking can be achieved by computing and sorting the distances from the multi-view embeddings to the separating hyperplane. Extensive experimental evaluations on the two public benchmarks Oxford5k and Paris6k reveal our approach provides further performance boost for accurate image re-ranking, whilst the comparative study demonstrates the advantage of our method against other multi-view re-ranking methods.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1808.04437v1">arXiv:1808.04437v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/exveffacpvhgfbmcmts7jzwsv4">fatcat:exveffacpvhgfbmcmts7jzwsv4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200823125111/https://arxiv.org/pdf/1808.04437v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/3e/f7/3ef786359d1247f0a4c8024679f787a537b4f4a2.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1808.04437v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>