Hierarchical Reinforcement Learning: A Survey and Open Research Challenges

Matthias Hutsebaut-Buysse, Kevin Mets, Steven Latré
2022 Machine Learning and Knowledge Extraction  
Reinforcement learning (RL) allows an agent to solve sequential decision-making problems by interacting with an environment in a trial-and-error fashion. When these environments are very complex, pure random exploration of possible solutions often fails, or is very sample inefficient, requiring an unreasonable amount of interaction with the environment. Hierarchical reinforcement learning (HRL) utilizes forms of temporal- and state-abstractions in order to tackle these challenges, while
more » ... eously paving the road for behavior reuse and increased interpretability of RL systems. In this survey paper we first introduce a selection of problem-specific approaches, which provided insight in how to utilize often handcrafted abstractions in specific task settings. We then introduce the Options framework, which provides a more generic approach, allowing abstractions to be discovered and learned semi-automatically. Afterwards we introduce the goal-conditional approach, which allows sub-behaviors to be embedded in a continuous space. In order to further advance the development of HRL agents, capable of simultaneously learning abstractions and how to use them, solely from interaction with complex high dimensional environments, we also identify a set of promising research directions.
doi:10.3390/make4010009 fatcat:emexhacqtvgdbelvbufusneira