Synthesis, Characterization, and Antibacterial Activities of High-Valence Silver Propamidine Nanoparticles

Jinran Lee, Baskaran Purushothaman, Zhao Li, Goutam Kulsi, Joon Song
2017 Applied Sciences  
Diabetic foot ulcer (DFU) is becoming more serious concern as it affects 95% of diabetic patients worldwide. It has been shown that the Staphylococcus aureus and other Gram-negative microorganisms are the main reasons behind this disease. Though many antibiotics are presently used to treat the DFU, due to increased bacterial resistance, new alternative therapies are always welcome. To address this alarming issue, we have designed and synthesized the high-valence silver propamidine (Ag(II)PRO)
more » ... idine (Ag(II)PRO) complex as well as nanoparticles and characterized both by usual spectroscopic methods. The reverse microemulsion technique has been applied to synthesize Ag(II)PRO nanoparticles and its antibacterial activity has been compared with zero-valence silver nanoparticles (AgNPs) with similar size. The antibacterial efficacies of Ag(II)PRO nanoparticles and AgNPs were tested against Gram-negative and Gram -positive organisms responsible for DFU. The newly synthesized high-valence Ag(II)PRO nanoparticles showed higher antibacterial activity compared to silver-only nanoparticles (AgNPs). This study concludes that the high-valence Ag(II)PRO nanoparticles show better antibacterial activity than AgNPs and they may serve as the next generation therapeutic agent for the diabetic wound care.
doi:10.3390/app7070736 fatcat:dbhjxlg54fhklcka3ocicyvk4i