Peptides reproducing the phosphoacceptor sites of pp60c-src as substrates for TPK-IIB, a splenic tyrosine kinase devoid of autophosphorylation activity

O Marin, A Donella-Deana, A M Brunati, S Fischer, L A Pinna
1991 Journal of Biological Chemistry  
TPK-IIB, a spleen tyrosine protein kinase devoid of autophosphorylation activity (Brunati, A. M., and Pinna, L. A. (1988) Eur. J. Biochem. 172, 451-457), has been purified to near homogeneity and assayed for its ability to phosphorylate the synthetic peptides EDNEYTA and EPQYQPA reproducing the two conserved phosphoacceptor sites of pp60c-src (Tyr-416 and Tyr-527). While EPQYQPA was phosphorylated with low efficiency (Km = 16.7 mM, Kcat = 14.4), EDNEYTA is an excellent substrate displaying a Km
more » ... value of 58 microM and a Kcat value of 31.2. The single substitution, in the latter peptide, of the glutamic acid adjacent to the tyrosine by alanine to give EDNAYTA caused a 6-fold increase in the Km. The positive influence on the phosphorylation of the acidic residues at -3 and -4 relative to the tyrosine is indicated by comparison of the kinetic constants for peptides EDAAYAA (Kcat = 4.6, Km 0.325 mM) and QNAAYAA (Kcat 2.4, Km 1.7 mM). Furthermore, when residues in the peptide NEYTA were replaced by alanine, the phosphorylation of the peptides NAYTA and AAYAA, was almost negligible (in terms of Kcat/Km ratio). However, AEYTA, NEYAA and AEYAA were still phosphorylated, albeit less efficiently than NEYTA. The probability that these peptides will adopt a beta-turn is EDNAYTA = EDNEYTA, NAYTA greater than NEYTA, and no predicted beta-turn for AEYTA, NEYAA, and AEYAA. Therefore these results support the concept that an amino-terminal acidic residue(s) is strictly required by TPK-IIB, irrespective of peptide conformation, although a beta-turn may enhance the phosphorylation of those peptides that satisfy this requirement. Two other spleen tyrosine kinases, TPK-I/lyn and TPK-III, both related to the src family, also have a far greater preference for the peptide EDNEYTA over EPQYQPA. However, they can be distinguished from TPK-IIB by their lower affinity for the peptides EDNEYTA and NEYTA and by their different specificity towards the substituted derivatives of NEYTA. TPK-I/lyn, accepts most of the substitutions that are detrimental to TPK-IIB, the triply substituted peptide AAYAA being actually preferred over the parent peptide NEYTA. The substitution of glutamic acid by alanine is also tolerated by TPK-III, although, in contrast to TPK-IIB, the phosphorylation efficiency is drastically decreased by the substitution of the asparagine at position -2.(ABSTRACT TRUNCATED AT 250 WORDS)
pmid:1717442 fatcat:ixxmoanorjgunmhcmc7jpzfu2q