Spectral folding and two-channel filter-banks on arbitrary graphs [article]

Eduardo Pavez, Benjamin Girault, Antonio Ortega, Philip A. Chou
2020 arXiv   pre-print
In the past decade, several multi-resolution representation theories for graph signals have been proposed. Bipartite filter-banks stand out as the most natural extension of time domain filter-banks, in part because perfect reconstruction, orthogonality and bi-orthogonality conditions in the graph spectral domain resemble those for traditional filter-banks. Therefore, many of the well known orthogonal and bi-orthogonal designs can be easily adapted for graph signals. A major limitation is that
more » ... is framework can only be applied to the normalized Laplacian of bipartite graphs. In this paper we extend this theory to arbitrary graphs and positive semi-definite variation operators. Our approach is based on a different definition of the graph Fourier transform (GFT), where orthogonality is defined with the respect to the Q inner product. We construct GFTs satisfying a spectral folding property, which allows us to easily construct orthogonal and bi-orthogonal perfect reconstruction filter-banks. We illustrate signal representation and computational efficiency of our filter-banks on 3D point clouds with hundreds of thousands of points.
arXiv:2010.12604v1 fatcat:w3ayynz7w5hhlmkhvma7dnqrbe