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Abstract
Chloroplasts are the defining organelle of photoautotrophic plant cells.
Photosynthetic light reactions and electron transport are the functions
of an elaborate thylakoid membrane system inside chloroplasts. The
lipid composition of photosynthetic membranes is characterized by a
substantial fraction of nonphosphorous galactoglycerolipids reflecting
the need of sessile plants to conserve phosphorus. Lipid transport and
assembly of glycerolipids play an essential role in the biogenesis of the
photosynthetic apparatus in developing chloroplasts. During chloro-
plast biogenesis, fatty acids are synthesized in the plastid and are ex-
ported to the endoplasmic reticulum, where they are incorporated into
membrane lipids. Alternatively, lipids can also be assembled de novo at
the inner envelope membrane of plastids in many plants. A rich reper-
toire of lipid exchange mechanisms involving the thylakoid membranes,
the chloroplast inner and outer envelope membranes, and the endoplas-
mic reticulum is emerging. Studies of thylakoid biogenesis provide new
insights into the general mechanisms of intermembrane lipid transfer.
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MGDG: monogalac-
tosyldiacylglycerol

DGDG: digalactosyl-
diacylglycerol

PtdGro:
phosphatidylglycerol

PtdCho:
phosphatidylcholine
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INTRODUCTION: LIPID
DIVERSITY AND BIOGENIC
MEMBRANES

Membranes of eukaryotic cells play many roles,
from providing the boundaries of cells and or-
ganelles to the conversion of light into chem-
ical energy during photosynthesis. Therefore,
it is not surprising that different subcellu-
lar membranes have very different protein
and lipid compositions that meet the func-
tional requirements of the respective special-
ized cell membrane. Compared to typical cell
membranes of animals, fungi, or nonphotosyn-
thetic bacteria, the lipid composition of chloro-
plast membranes seems at first sight unusual
with its abundance of nonphosphorous galac-
toglycerolipids, mono- and digalactosyldiacyl-
glycerol (MGDG and DGDG, respectively),
the presence of the sulfolipid sulfoquinovo-
syldiacylglycerol (SQDG), and the conspicu-
ous underrepresentation of phospholipids with
the exception of phosphatidylglycerol (PtdGro)
and phosphatidylcholine (PtdCho) (Browse &
Somerville 1994, Jouhet et al. 2007). The latter

is present in the outer envelope membrane of
chloroplasts but mostly absent from the thy-
lakoid membranes, although this question is
still not unambiguously resolved (Andersson
et al. 2001, Dorne et al. 1990). Structures of
these lipids are shown in Figure 1. To un-
derstand the combinatorial complexity of polar
membrane lipids in plants, one has to keep in
mind that the shown structures (Figure 1a,b)
are representatives of lipid classes. Each class
consists of a number of possible molecular
species characterized by their respective fatty
acyl chain substituents, which can vary in length
as well as number and position of double bonds
(Figure 1c). This diversity of molecular species
within each lipid class is relevant to the dis-
cussion of alternate pathways for the synthe-
sis of thylakoid lipids, and it provides an ex-
cellent diagnostic opportunity for monitoring
fluxes through different pathways of lipid as-
sembly in wild type and mutants (Browse et al.
1986b, Heinz & Roughan 1983, Kunst et al.
1988, Xu et al. 2003).

Even within plant cells, the chloroplast
lipid composition is very different from the
composition of membranes in other plant or-
ganelles (Browse & Somerville 1994, Jouhet
et al. 2007). However, looking at a prominent
group of photosynthetic bacteria, the cyanobac-
teria, their cell membrane lipid composition
resembles that of plant chloroplast thylakoids,
supporting the generally accepted hypothesis
that plant chloroplasts evolved from endosym-
biotic ancestral cyanobacteria (Reyes-Prieto
et al. 2007). Moreover, considering that photo-
synthetic organisms—cyanobacteria, algae, and
land plants—dominate the biosphere, the abun-
dance of nonphosphorous glycoglycerolipids in
biomembranes is not surprising. Rather, given
the global abundance of these lipids, their im-
portance for photosynthesis, their predomi-
nance in photosynthetic membranes, and their
relative absence in nonphotosynthetic mem-
branes have made the biogenesis of the pho-
tosynthetic membrane a fertile testing ground
for new ideas regarding the general principles
of fatty acid and polar lipid transfer through and
between membranes (Benning 2008, Jouhet
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Figure 1
Glycerolipids associated with plastids and their prevalent molecular species. Glycerolipid classes typified by their respective polar head
groups are divided into phosphoglycerolipids (a) and non-phosphorous glycoglycerolipids (b). The richness of molecular species
diversity within each lipid class arises from combinations of acyl chains (R-groups) attached to the respective sn-1 or sn-2 positions of
the glycerol backbone. Typical acyl chains depicted as R-groups in panel (c) specify the prevalent molecular species of each lipid class
shown in (a) and (b). Only some of the most likely R-group combinations are shown in (a) and (b), and many others have been
described. Indication of two R-groups in specific positions implies that one or the other can be present at high frequency. Note that
certain acyl chains occur only in specific positions of the glycerol backbone of specific lipids. These differences can be diagnostic for the
assembly pathway giving rise to a specific lipid molecular species. Lipid classes depicted in (a) are phosphatidylcholine (PtdCho) and
phosphatidylglycerol (PtdGro); in (b) trigalactosyldiacylglycerol (TGDG), which accumulates in Arabidopsis lipid trafficking mutants,
digalactosyldiacylglycerol (DGDG), monogalactosyldiacylglycerol (MGDG), and sulfoquinovosyldiacylglycerol (SQDG). The bulk of
the thylakoid membrane is made up of PtdGro, DGDG, MGDG, and SQDG. The R-groups shown in (c) specify the following acyl
chains [trivial names of the corresponding free acid–R-group plus the carboxyl carbon, which is not shown in (c)–from left to right]:
hexadecatrienoic acid, α-linolenic acid, linoleic acid, oleic acid, �3-trans hexadecenoic acid, and palmitic acid. The chain length of the
respective acyl group (shown R-group plus the carboxyl carbon) and the position of the double bonds (counting from the carboxyl end)
are indicated.
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Plastid: plant
organelle including
chloroplasts and
plastids in nongreen
tissues

ER: endoplasmic
reticulum

et al. 2007). Contributing to our increasing un-
derstanding of chloroplast lipid assembly has
been the progress in experimental approaches.
Rapid pulse-chase labeling experiments have
provided a refined view of the dynamics of
lipid transfer processes and the initial precursor
pools (Bates et al. 2007), and powerful genetic
and genomic tools applied to the model plant
Arabidopsis have identified components of a pro-
posed lipid transporter involved in chloroplast
biogenesis (Awai et al. 2006, Lu et al. 2007, Xu
et al. 2003).

It is the chemical nature of the lipid build-
ing blocks of membranes that they are not
freely soluble at higher concentrations in water
but form aggregates such as micelles or bilay-
ered vesicles (Webb & Green 1991). This in-
herent property has mechanistic consequences
for the mode of transport of polar membrane
lipids and the enzymes involved in their syn-
thesis. In simplistic terms, when studying mem-
brane lipids, solution biochemistry in a three-
dimensional space gives way to chemistry in
two dimensions represented by the plane of
the membrane bilayer. A third, rather con-
strained dimension comes into play when lipids
move between the two membrane leaflets or be-
tween different membranes. Most membranes
do not have the protein machinery to assem-
ble all polar membrane lipids of which they
are composed, and consequently acquire their
lipid building blocks by lipid transfer from bio-
genic membranes (those capable of assembling
lipids). Among the membranes most active in
lipid biosynthesis in plant cells are the plastid
envelope membranes and the endoplasmic
reticulum (ER).

The complexity of thylakoid lipid biosyn-
thesis arises from the fact that four membrane
systems participate: (a) the thylakoid mem-
branes as the ultimate recipient of polar lipid
building blocks, (b) the inner plastid envelope
membrane, (c) the outer plastid envelope mem-
brane, and (d ) the ER. The latter three are bio-
genic membranes because different lipid assem-
bly machineries are associated with these three
membranes that give rise to thylakoid lipids.
There is also some redundancy built into the

system in many plants, with parallel lipid as-
sembly pathways and lipid acyl group modifica-
tion systems (fatty acid desaturases) associated
with the inner plastid envelope membrane and
the ER. One key advantage of Arabidopsis in the
study of lipid transfer phenomena is that Ara-
bidopsis belongs to a group of plants (Mongrand
et al. 1998) that can assemble thylakoid glyco-
glycerolipids de novo at the chloroplast enve-
lope membranes and that are also able to import
thylakoid lipid precursors into the plastid that
are first assembled at the ER. As a consequence,
viable Arabidopsis mutants specifically affected
in one or the other pathway are available for
detailed phenotypic analysis.

THE DYNAMIC NATURE
OF LIPID METABOLISM

Owing to their sessile nature, plants cope with
a fluctuating growth environment primarily by
invoking physiological and biochemical adap-
tations. The ability of plants and cyanobacteria
to adjust their membrane lipid molecular
species composition, that is, the desaturation
level of the lipid acyl chains in response to tem-
perature, has long been known (e.g., Matsuda
et al. 2005, Suzuki et al. 2000). However, the
extent of changes in lipid molecular species
composition in response to temperature stress
is dwarfed by the drastic alteration in lipid
class composition in response to phosphate
deprivation observed in Arabidopsis (Essigmann
et al. 1998; Härtel et al. 2000, 2001; Li et al.
2006). This phenomenon is most strongly
visible in roots, which have to increase their
resorptive surface area under these conditions.
Membrane remodeling in response to phos-
phate limitation might be ubiquitous to all
land plants (Tjellstrom et al. 2008). It leads
to a replacement of phosphoglycerolipids
with nonphosphorous glycoglycerolipids and
remobilizes phosphorus from plant membranes
that typically bind one third of the organic
phosphorus in Arabidopsis (Poirier et al. 1991).

What makes this phenomenon relevant to
the discussion of lipid transport is the fact that
glycoglycerolipids produced at the chloroplast
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envelopes replace not only phosphoglyc-
erolipids in the thylakoid membrane, but
also in extraplastidic membranes as shown in
Figure 2. The anionic sulfolipid SQDG assem-
bled at the inner plastid envelope replaces Ptd-
Gro in thylakoid membranes (Essigmann et al.
1998, Yu et al. 2002, Yu & Benning 2003). The
galactoglycerolipid DGDG substitutes PtdCho
in extraplastidic membranes (Härtel et al. 2000,
2001), mitochondria ( Jouhet et al. 2004), the
tonoplast (Andersson et al. 2005), the plasma
membrane (Andersson et al. 2003, Russo et al.
2007), and the peribacteroid membrane in
legumes (Gaude et al. 2004). In general, this
process reverses as phosphate deprivation is re-
lieved (Tjellstrom et al. 2008). Interestingly, the
monogalactosyl form, MGDG, is not observed
in extraplastidic membranes, although this
lipid is an excellent non-bilayer-forming lipid
that can functionally replace the non-bilayer-
forming lipid phosphatidylethanolamine
(PtdEtn) in Escherichia coli (Wikstrom et al.
2008).

Isoforms of phospholipase D appear to be
involved in phosphoglycerolipid turnover in
roots (Cruz-Ramirez et al. 2006, Li et al. 2006),
whereas phospholipase C isoforms have been
implicated in leaves (Andersson et al. 2005,
Gaude et al. 2008, Nakamura et al. 2005).
Glycosyltransferases required for the biosyn-
thesis of DGDG under phosphate limitation
are associated with the outer plastid envelope
(Figure 2), which in Arabidopsis are the MGDG
synthases MGD2 and MGD3 (Awai et al. 2001;
Kobayashi et al. 2006, 2008), and the DGDG
synthases DGD1 and DGD2 (Härtel et al.
2000, Kelly & Dörmann 2002, Kelly et al.
2003). The SQDG synthase, SQD2, is associ-
ated with the inner plastid envelope membrane
(Seifert & Heinz 1992, Yu et al. 2002), and
consequently SQDG replaces anionic phos-
pholipids in the thylakoids (Figure 2) but not
in extraplastidic membranes as was recently
confirmed by labeling experiments (Tjellstrom
et al. 2008). The expression of the respective
genes is coordinately and strongly induced un-
der phosphate-limited conditions (Hammond
et al. 2003, Misson et al. 2005, Morcuende et al.

MGDG DAG 

DAG

DGD2 MGD3

DGDG

SQDG

SQD2

Mitochondrion

Plasma 
membrane

Vacuole

Thylakoids

Chloroplast

Figure 2
Transfer of glycoglycerolipids from the plastid envelopes following phosphate
deprivation. Sulfolipid (SQDG) is produced at the inner plastid envelope from
diacylglycerol (DAG) and UDP-sulfoquinovose (not shown) catalyzed by the
SQDG synthase encoded in Arabidopsis by SQD2 and transferred to the
thylakoids. Digalactosyldiacylglycerol (DGDG) is produced under phosphate-
limited conditions preferentially by the sequential action of
galactosyltransferases at the outer plastid envelope and encoded in Arabidopsis
by MGD3 and DGD2. Lipid substrates are diacylglycerol (DAG) and
monogalactosyldiacylglycerol (MGDG). The galactosyl group donor
UDP-Gal is not shown. DGDG produced under these conditions is transferred
to different subcellular membranes as indicated by arrows.

DGD1:
glycosyltransferase
involved in digalacto-
syldiacylglycerol
synthesis

2007, Wu et al. 2003). Recently, reactive oxy-
gen species and growth factors such as auxin
and cytokinin have been implicated in the reg-
ulation of lipid genes in response to phosphate
deprivation (Kobayashi et al. 2006, Xu et al.
2008b). Mutant analysis in Arabidopsis has un-
ambiguously established that the substitution of
phosphoglycerolipids with glycoglycerolipids is
an essential process under phosphate-limited
growth conditions (Kelly & Dörmann 2002,
Kelly et al. 2003, Kobayashi et al. 2008, Yu
et al. 2002, Yu & Benning 2003). It is appar-
ent that during phosphoglycerolipid turnover,
lipid breakdown products have to move back
from nonbiogenic membranes to the plastid en-
velope membranes, and that glycoglycerolipids
produced at the envelopes have to move to their
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CoA: coenzyme A

PtdOH: phosphatidic
acid

ACP: acyl carrier
protein

ABC: ATP-binding
cassette

respective nonbiogenic membrane destina-
tions. However, the underlying mechanisms
still remain unexplored.

FATTY ACID EXPORT
FROM PLASTIDS

In plants, the activity of a prokaryotic type
II multipartite fatty acid synthase complex
(Harwood 1996, White et al. 2005) located in
the plastid is the major source of acyl groups
that ultimately are incorporated into cell mem-
brane lipids (Ohlrogge et al. 1979). Accord-
ingly, the Arabidopsis mod1 mutant, which is
deficient in a plastid fatty acid synthase com-
ponent, is severely impaired in growth (Mou
et al. 2000). The classical hypothesis for fatty
acid export and subsequent reactions at the ER
is shown in Figure 3a (pathway 1). Oleic or
palmitic acids are exported from the plastid,
activated to acyl-CoAs, assembled into phos-
phatidic acid (PtdOH) at the ER, converted to
PtdCho, and then diversified by acyl desatu-
ration into other molecular species (Browse &
Somerville 1991, Ohlrogge & Browse 1995).
Most ER-assembled PtdOH and a large frac-
tion of PtdCho are metabolized to the building
blocks for all extraplastidic glycerolipids. Flux
of acyl chains through the plastid export path-
way can be particularly substantial in develop-
ing oil seed embryos of plants such as Brasscia
napus, which store up to 50% of their dry mass
in triacylglycerols. However, to date no specific
protein has been unambiguously implicated in
the export mechanism for fatty acids from plas-
tids in plants.

Permeability coefficients for long chain fatty
acids tested on pure lipid membranes are rel-
atively high, leading some to suggest that
proteins are not necessarily required to fa-
cilitate fatty acid transfer through cell mem-
branes (Hamilton 2007, Kamp & Hamilton
2006). Even if this were the case, enzymes con-
verting activated acyl-ACP (acyl carrier pro-
tein) intermediates on the inside of plastids
into acyl-CoAs present in the cytosol such as
thioesterases and long chain acyl-CoA syn-
thetases need to be involved. The formation

of free fatty acids during this process has been
confirmed by [13C2

18O2]acetate labeling exper-
iments with spinach leaves. A 50% reduction in
18O-content of glycerolipids assembled outside
the plastid was consistent with the formation
of free fatty acids by hydrolysis during export
(Pollard & Ohlrogge 1999). Furthermore, in
kinetic labeling experiments with spinach and
pea leaves using [14C]acetate, a channeled pool
of fatty acids closely linked to long chain acyl-
CoA synthesis was observed (Koo et al. 2004).
Whereas a role for long chain acyl-CoA syn-
thetases in fatty acid export seems all too obvi-
ous, it has been difficult to identify a particular
enzyme, possibly because of redundancy. For
example, Arabidopsis contains a large number
(67) of acyl-activating enzymes (Shockey et al.
2003) including nine long chain acyl CoA syn-
thetases presumed to be involved in fatty acid
and glycerolipid metabolism (Shockey et al.
2002). Fatty acid export from plastids must be
essential in plants, but inactivation of the most
prevalent plastid isoform in Arabidopsis, LACS9,
did not affect growth of the plant (Schnurr et al.
2002). Whereas other isoforms could take over
the function of LACS9 in the mutant, the result
did not rule out that LACS9 is a major player
in fatty acid export in vivo.

In E. coli, a fatty acid transport protein in
the outer membrane, FadL, and an acyl-CoA
synthetase, FatD, associated with the cytosolic
side of the cell membrane, are proposed to act
in concert in the uptake and activation of free
long chain fatty acids, a mechanism described
as vectorial catalysis (Black & DiRusso 2003).
However, orthologs of FadL have so far not
been identified in plant genomes. Precedence
for a possible plant fatty acid transporter arises
from a peroxisomal ABC transporter required
for fatty acid breakdown (Footitt et al. 2002,
Hayashi et al. 2002, Zolman et al. 2001). Plants
contain a large number of putative ABC trans-
porters awaiting functional assignment (Rea
2007), and a systematic analysis of ABC trans-
porters predicted to be associated with the plas-
tid envelope in Arabidopsis might be promising.

To probe the mechanism for the export
of fatty acids from plastids, the initial fate of

76 Benning
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 3
ER-plastid interaction in glycerolipid biosynthesis.
(a) Export of fatty acids from plastids. (b) The two
pathways of thylakoid lipid biosynthesis. The plastid
envelope ER-contact site (PLAM) is shown in both
panels. (a) Acyl-ACPs (not shown) are released from
the fatty acid synthase complex (FAS) and
hydrolyzed to free fatty acids (FFA), which are
reactivated to acyl-CoAs on the cytosolic face of the
outer envelope membrane. The classic hypothesis is
that phospholipids are directly assembled from
nascent fatty acids (pathway 1) by reacting glycerol
3-phosphate (G3P) with one acyl-CoA to give rise
to lysophosphatidic acid (L-PtdOH) and a second
acyl-CoA to produce phosphatidic acid (PtdOH).
PtdOH is further converted to diacylglycerol
(DAG), which is the precursor for
phosphatidylcholine (PtdCho) biosynthesis along
with CDP-choline. Recent studies (Bates et al. 2007)
suggest the involvement of a PtdCho editing
pathway (pathway 2) in which PtdCho is constantly
turned over to lyso-phosphatidylcholine
(L-PtdCho). Newly exported fatty acids are
predominantly channeled to L-PtdCho and then
exchanged between the PtdCho and the acyl-CoA
pool followed by de novo synthesis (pathway 1). All
these reactions could occur in the PLAMs in which
ER and plastid outer envelope membranes are
tightly associated. (b) Lipid assembly reactions of the
plastid pathway are shown with red arrows,
reactions of the ER pathway with blue arrows, and
common reactions with purple arrows. The focus is
on the biosynthesis of the major galactoglycerolipids
monogalactosyldiacylglycerol (MGDG) and
digalactosyldiacylglycerol (DGDG) starting from
fatty acid synthesis (FAS) in the plastid. The
biosynthesis of MGDG occurs at the interenvelope
face of the inner envelope membrane, that of
DGDG at the cytosolic face of the outer envelope
membrane. In C16:3 plants such as Arabidopsis, both
pathways contribute to galactoglycerolipids. The
exact nature of the lipid precursor returned to the
plastid is not known. Lipid precursor abbreviations
are as defined for (a). Enzymes or enzyme complexes
are indicated by numbers: 1, plastid G3P:acylACP
acyltransferase (ATS1/ACT1 in Arabidopsis); 2,
plastid L-PtdOH:acyl-ACP acyltransferase; 3,
plastid PtdOH phosphatase; 4, ER G3P:acylACP
acyltransferase; 5, ER L-PtdOH:acyl-ACP
acyltransferase; 6, ER PtdOH phosphatase; 7,
DAG:CDP-choline phosphotransferase; 8, PtdOH
importer (TGD1,2,3 in Arabidopsis); 9,
DAG:UDP-Gal galactosyltransferase (MGDG
synthase, MGD1 in Arabidopsis); 10,
MGDG:UDP-Gal galactosyltransferase (DGDG
synthase, DGD1 in Arabidopsis).

nascent fatty acids destined for the cytosol
has been determined. Kinetic labeling experi-
ments with [14C]carbon dioxide and molecular
species analysis of lipids with Brassica napus leaf
discs revealed extensive scrambling between
labeled and unlabeled fatty acids in PtdCho,
which was attributed to acyl exchange be-
tween different molecular species of PtdCho
(Williams et al. 2000). This result did not
agree with the classic view of a biosynthetic
sequence in which oleic or palmitic acids are ex-
ported from the plastid and first assembled into
PtdOH at the ER (Figure 3a, pathway 1). More
recently, rapid kinetic labeling experiments

1 2 3

4 5 6
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8 9
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MGD1:
glycosyltransferase
involved in
monogalactosyldiacyl-
glycerol
synthesis

with pea leaves did not find a precursor-product
relationship between nascent fatty acids and
PtdOH (Bates et al. 2007). Instead, an acyl
editing mechanism acting on the sn-1 and sn-2
positions of PtdCho was determined as one of
the first processes in the assembly of fatty acids
into membrane lipids. The presence of labeled
acyl groups preferentially in the sn-2 position
of the glycerol backbone of PtdCho, as was
also observed for leek seedlings (Mongrand
et al. 1997, 2000), also disagrees with an initial
synthesis of PtdOH and its subsequent conver-
sion to PtdCho. Rather, recycled acyl-groups
exchanged between PtdCho and the cytosolic
acyl-CoA pool are made available for de novo
PtdOH and subsequent PtdCho biosyntheses
at the ER in expanding leaves (Figure 3a, path-
way 2). Activities of PtdCho:CoA acyl exchange
associated with plastids have been described
(Bessoule et al. 1995, Kjellberg et al. 2000).
Alternatively, phospholipases in combination
with acyl-CoA synthetases could mediate the
incorporation of nascent fatty acids into Ptd-
Cho. Determining the molecular identity and
biochemical activity of the proteins catalyzing
the initial incorporation of nascent fatty
acids into PtdCho will provide an important
breakthrough for our current understanding of
fatty acid export from plastids.

TWO PATHWAYS FOR THE
ASSEMBLY OF THYLAKOID
LIPIDS

Up to this point the discussion has exclusively
focused on the export of lipids and fatty acids
from the plastid. Assuming that most lipid pre-
cursors originate in the plastid, these processes
can be classified as anterograde lipid transport.
However, plastids in most plants are capable
of importing lipid precursors assembled at the
ER and incorporating them into the differ-
ent thylakoid lipids, a process that can be de-
scribed as retrograde lipid transport. Many land
plants use two pathways for the assembly of thy-
lakoid lipid precursors as shown in Figure 3b:
a de novo lipid assembly pathway in the plas-
tid (Figure 3b, reactions 1–3) and a pathway

operating at the ER (Figure 3b, reactions
4–7). This two-pathway hypothesis was orig-
inally proposed by Roughan and coworkers
(Roughan et al. 1980) following in vivo label-
ing experiments with leaves and in vitro la-
beling experiments with isolated plastids and
microsomes done by a number of groups as
summarized in two classic reviews (Frentzen
1986, Roughan & Slack 1982). A key finding
was that glycerolipids produced by the ER path-
way have a different molecular species compo-
sition (18-carbon fatty acids in the sn-2 position
of the glycerol backbone) than those produced
by the plastid pathway (16-carbon fatty acids in
sn-2) (Heinz & Roughan 1983). Different sub-
strate specificities of acyltransferases at the ER
and the plastid envelope account for these dif-
ferences (Frentzen et al. 1983).

Molecular lipid species analysis was devel-
oped as a tool to determine the relative flux con-
tribution of the two pathways to the synthesis
of the four thylakoid lipid classes. For example,
in Arabidopsis approximately equal amounts of
chloroplast lipids are produced by the two path-
ways (Browse et al. 1986b). All PtdGro in the
plastid is derived from the plastid pathway, as is
the largest fraction of MGDG and SQDG. All
of the PtdCho associated with plastids is derived
from the ER pathway, as is most of DGDG.

For the sake of simplicity, much of this dis-
cussion focuses on the assembly of the two
galactoglycerolipids (Benning & Ohta 2005),
which also dominate the thylakoid lipid com-
position. As shown in Figure 3b, the bulk of
MGDG in plastids of Arabidopsis is synthesized
at the intermembrane facing leaflet of the in-
ner plastid envelope membrane where the re-
sponsible galactosyltransferase, MGD1, is lo-
calized (Awai et al. 2001, Jarvis et al. 2000, Xu
et al. 2005). The bulk of DGDG is synthe-
sized at the cytosolic face of the outer enve-
lope membrane catalyzed by a second galac-
tosyltransferase DGD1 (Dörmann et al. 1999,
Froehlich et al. 2001). The contribution of
the two pathways is different depending on
the plant species. Molecular species analysis of
lipids divides plants into two groups: those with
a large fraction of 16-carbon fatty acids (mostly
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hexadecenoic acid, C16:3, in MGDG) in the
sn-2 position of glycerol in thylakoid glyco-
glycerolipids (C16:3 plants) and those (C18:3
plants) with exclusively 18-carbon fatty acids in
sn-2 (mostly linolenic acid, C18:3, in MGDGD
and DGDG) (Heinz & Roughan 1983, Mon-
grand et al. 1998). Some of the most evolved
plants have lost the plastid pathway for glyco-
glycerolipid biosynthesis and are C18:3 plants.

Based on molecular species composition and
label experiments with isolated plastids, plas-
tid PtdGro biosynthesis is an exception, be-
cause in all plants tested, its biosynthesis seems
to depend on the plastid pathway. One ex-
planation proposed early on was that C18:3
plants have reduced PtdOH phosphatase ac-
tivity (Figure 3b, enzyme 3) (Frentzen et al.
1983, Heinz & Roughan 1983), which is not re-
quired for PtdGro biosynthesis (Frentzen 2004)
but is necessary for galactoglycerolipid biosyn-
thesis (Benning & Ohta 2005). However, the
recent discovery of a presumed PtdOH trans-
porter involved in the import of lipids into
the plastid as part of the ER-pathway in Ara-
bidopsis (Figure 3b, enzyme complex 8) as dis-
cussed in detail below appears to conflict with
this idea, because in the current model lipids
derived from the ER and the plastid path-
ways would have to be metabolized by a plastid
PtdOH phosphatase (Figure 3b, enzyme 3).

The two-pathway hypothesis shown in
Figure 3b and the correlation of lipid molec-
ular species with their respective origins from
one of the two pathways was independently cor-
roborated by Browse, Somerville, and cowork-
ers, who studied a series of Arabidopsis mutants
deficient in fatty acid biosynthesis and mod-
ification, and glycerolipid assembly (Browse
& Somerville 1991, 1994; Wallis & Browse
2002). Of particular interest here is the ats1
mutant (formerly act1), in which the plastid
G3P:acylACP acyltransferase (Figure 3b, en-
zyme 1) is affected, leading to a loss of the galac-
toglycerolipid species derived from the plas-
tid pathway. This effectively turns Arabidopsis
from a C16:3 plant into a C18:3 plant (Kunst
et al. 1988). Surprisingly, all alleles of ats1 still
produce considerable amounts of PtdGro in

the plastid despite a very strong reduction in
enzyme activity (Xu et al. 2006). Either the
residual activity is sufficient or a not-yet discov-
ered alternative pathway for PtdGro biosynthe-
sis is active in plastids.

Fatty acid desaturase mutants also pro-
vided information on the acyl composition of
the possible lipid intermediate returning from
the ER to the plastid. The fad2 mutant of
Arabidopsis lacking the ER-associated oleoyl-
PtdCho desaturase showed a strong reduction
of molecular MGDG species derived from the
ER-pathway, suggesting that the ER-to-plastid
lipid transfer machinery prefers lipid molecu-
lar species containing acyl chains with more
than one double bond (Miquel & Browse 1992).
These genetic data confirmed earlier results
of labeling experiments suggesting that C18:2-
containing molecular species of PtdCho are
likely precursors for C18:3-containing molecu-
lar species of MGDG (Slack et al. 1977). The al-
ready mentioned uneven labeling of fatty acids
in the two positions of the glycerol backbone
(Bates et al. 2007, Williams et al. 2000) has been
interpreted as the re-import of lyso-PtdCho
from the ER (Mongrand et al. 1997, 2000).
However, because it is not clear where acyl edit-
ing occurs, at the envelopes or the ER, the in-
terpretation of these results is ambiguous. One
clue that PtdCho plays a critical role in the
retrograde transfer of lipids from the ER to
the plastid comes from the green alga Chlamy-
domonas reinhardtii, which lacks PtdCho and ac-
cordingly ER-derived thylakoid lipids (Giroud
et al. 1988).

Genetic analysis in Arabidopsis has provided
surprising evidence that highly unsaturated
lipid precursors can leave the plastid, even un-
der phosphate-replete conditions. In mutants in
which ER-associated fatty acid desaturases are
deficient, unsaturated fatty acids are still found
in extraplastidic lipids, suggesting that a signif-
icant amount of unsaturated molecular species
can be exported from the plastid (Browse et al.
1993, Miquel & Browse 1992). Conversely, ev-
idence for this export of highly unsaturated
lipid molecular species is also visible in a mu-
tant deficient in a plastid fatty acid desaturase,
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Plastid–associated
microsomes
(PLAM): derived
from ER-plastid
contact sites

tgd1,2,3,4: mutants of
Arabidopsis
accumulating trigalac-
tosyldiacylglycerol

DAG: diacylglycerol

in which extraplastidic lipids are less saturated
as well (Browse et al. 1986a). Thus, the in-
teraction between the ER and plastid path-
ways of lipid assembly is complex—involving
intricate lipid transfer reactions. Indeed, dis-
tinguishing lipid assembly and transport pro-
cesses at the ER and the plastid outer en-
velope membrane have become conceptually
more difficult with the discovery of ER-plastid
contact sites (Figure 3a,b) that give rise to a
plastid-associated microsome fraction (PLAM)
with classically ER-associated enzymatic activ-
ities (Kjellberg et al. 2000). These contact sites
have recently been visualized, and the strength
of interaction between the two membrane

PtdOH

MGDG

PtdCho

DGDG

DAG
DAG

PtdCho

PtdOH

Endoplasmic reticulum

Inner envelope membrane 

Outer envelope 
membrane 

TGD
PAP

PLD

MGD1

DGD1
TGD4

3
1

2

Figure 4
Interaction of components involved in ER-to-plastid lipid transport and
galactoglycerolipid assembly in Arabidopsis. The endoplasmic reticulum (ER)
and the outer and inner envelope membranes of the plastid are shown. The two
layers of the membranes are indicated. Proteins for which the identity is known
are shaded purple; those for which the identity is unclear are shown in blue.
TGD4 is associated with the ER but its exact role is not yet known. A
phospholipase D (PLD) is proposed to convert phosphatidylcholine (PtdCho)
to phosphatidic acid (PtdOH), which is the proposed substrate of the
TGD1,2,3 transporter complex in the inner envelope membrane. TDG2 is
proposed to accept PtdOH from the outer envelope. Phosphatidic acid
phosphatase (PAP) at the inside of the inner envelope converts PtdOH to
diacylglycerol (DAG). DAG is made available for the biosynthesis of
monogalactosyldiacylglycerol (MGDG) by MGD1 located at the inter-
membrane face of the inner plastid envelope membrane. MGDG is converted
to digalactosyldiacylglycerol (DGDG) by DGD1 located at the cytosolic face of
the outer envelope membrane. All these proteins could be organized in a
supercomplex involving the three membranes and allowing substrate
channeling between the components.

systems has been determined using optical
tweezers (Andersson et al. 2007).

LIPID TRANSFER BETWEEN THE
ER AND PLASTID ENVELOPES

The complexity and redundancy of thylakoid
lipid biosynthesis as depicted in Figure 3b

clearly invokes lipid transport processes that
must shuttle lipid precursors and products be-
tween the three involved biogenic membranes
and the thylakoids. In recent years, Arabidopsis
genetics provided identification of some of the
genes and proteins involved in the process,
and a current model depicting the location and
possible function of these proteins is shown in
Figure 4. In addition to the already mentioned
ats1 mutant disrupted in the plastid pathway of
galactolipid biosynthesis, mutants of Arabidop-
sis were identified that clearly meet phenotypic
criteria for a disruption in the ER pathway of
thylakoid lipid biosynthesis. These are the tgd
mutants named after oligogalactoglycerolipids,
for example, trigalactosyldiacylglycerol
(TGDG; see Figure 1), accumulating in their
tissues (Awai et al. 2006; Lu et al. 2007; Xu
et al. 2003, 2005, 2008a). The oligogalacto-
glycerolipids produced in the tgd mutants are
structurally different from the typical galac-
toglycerolipids found in leaves, such that they
are not likely the product of the nonproces-
sive UDP-Gal-dependent MGD1 or DGD1
galactosyltransferases or their MGD2/3 and
DGD2 paralogs (Xu et al. 2003). Instead, these
oligogalactoglycerolipids appear to be pro-
duced by a processive UDP-Gal-independent
galactosyltransferase associated with the outer
envelope membrane. This activity was also
previously observed in plastid preparations by
Wintermans and colleagues (Heemskerk et al.
1988, van Besow & Wintermans 1978). The
respective enzyme transfers galactosyl residues
repeatedly from MGDG onto an acceptor
lipid, for example a second MGDG, thereby
releasing diacylglycerol (DAG) (Benning &
Ohta 2005).

The function of this enzyme in the wild type
is not clear at this time. However, a candidate
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gene and a mutant of Arabidopsis deficient in this
activity were recently isolated and provide the
basis for a functional analysis in the near future
(B. Muthan, E.R. Moellering, C. Xu, and C.
Benning, unpublished work). It is possible that
this enzyme is activated by PtdOH, which ac-
cording to the current model shown in Figure 4
is produced at the outer plastid envelope mem-
brane. Incidentally, PtdOH levels were found to
be elevated in the tgd1 mutant (Xu et al. 2005),
but the extent of its increase was dependent on
the growth conditions with older plants grown
on agar plates showing the highest PtdOH lev-
els (C. Xu and C. Benning, unpublished work).
The mutants also accumulate triacylglycerols
in their leaf tissue, and triacylglycerol biosyn-
thesis could be stimulated at the ER to remove
PtdOH backing up in tgd mutants. Therefore,
the buildup of unusual lipids, although highly
diagnostic for this mutant class, appears to be a
secondary phenotype.

The primary biochemical phenotype of the
tgd mutants is a disruption of lipid transfer from
the ER to the plastid apparent in an altered
molecular species composition—increased 16-
carbon fatty acids in the sn-2 position of the
glycerol backbone—of the thylakoid lipids con-
sistent with a relatively higher fraction of lipids
derived from the plastid pathway and a de-
creased flux through the ER pathway. The
molecular species composition of the accu-
mulating oligogalactolipids suggests that they
are derived from the plastid pathway, whereas
that of leaf triacylglycerols is consistent with
their synthesis at the ER. Molecular species of
PtdCho in tgd1 were very similar to that of
accumulating PtdOH, suggesting a possible
precursor-product relationship (Xu et al. 2005).
Contrary to molecular species analysis of lipids,
pulse-chase labeling experiments with acetate
or oleic acid provide a direct way of examining
lipid dynamics in vivo (Benning 2008). Pulse-
chase labeling clearly showed altered kinetics in
the tgd mutants consistent with a reduction in
import of lipids from the ER into the plastid
(Xu et al. 2003, 2008a).

The TGD proteins are essential to plant
growth, because as the severity of the mutant

alleles increases, the mutations either become
embryo-lethal as for tgd1 (Xu et al. 2005) or
cause severe growth reduction as for tgd4 (Xu
et al. 2008a). Compared to the plastid pathway,
the ER pathway of thylakoid lipid biosynthesis
is prevalent during Arabidopsis embryo develop-
ment and seems to be required for the transition
of proplastids into chloroplasts (Xu et al. 2005).
The TGD1, 2, and 3 proteins are similar to the
permease, substrate-binding, and ATPase pro-
teins, respectively, of a multipartite ABC trans-
porter (Figure 4). Many gram-negative bacte-
ria have orthologs of the Arabidopsis tgd1,2,3
genes organized in operons. These orthologs
are not essential for growth in E. coli (Gerdes
et al. 2003), but in Pseudomonas putida this com-
plex was shown to be required for solvent tol-
erance and has been proposed to constitute a
toluene efflux pump (Kieboom et al. 1998a,b;
Kim et al. 1998). However, toluene as a sub-
strate has not yet been confirmed. It seems just
as likely that the bacterial orthologs are in-
volved in lipid remodeling of the cell membrane
in response to solvent or osmotic stress.

Although there was initial evidence based
on protease protection experiments that TGD1
was associated with the outer envelope mem-
brane of plastids (Xu et al. 2003), later ex-
periments found the TGD1,2,3 proteins more
likely to be associated with the inner envelope
membrane as shown in Figure 4 (Awai et al.
2006, Lu et al. 2007, Xu et al. 2005). However,
it cannot be ruled out that the complex is lo-
cated in a contact site between the two envelope
membranes in which TGD1 would also appear
to be associated with the outer envelope mem-
brane. A direct determination of the substrate
for this putative plastid transporter has not been
accomplished. However, the TGD2 protein,
which is the presumed substrate-binding pro-
tein of the proposed complex, specifically binds
PtdOH (Awai et al. 2006). Furthermore, the in-
corporation of label from PtdOH into galac-
toglycerolipids by isolated tgd1 mutant plas-
tids was reduced (Xu et al. 2005). In Figure 4
the TGD2 protein while anchored in the in-
ner envelope is shown to touch the outer
envelope. Whereas this interaction may be
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transient and difficult to prove, it seems possible
that TGD2 extracts PtdOH formed at the outer
envelope and makes it available to the TGD1,3
core transporter. Two lines of evidence are
consistent with a possible role of TGD2 in a
two-membrane contact site: (a) TGD2 con-
tains a mycobacterial cell entry domain typically
found in cell surface proteins that are needed
by virulent mycobacteria to enter the host cells
(Chitale et al. 2001). (b) In experiments to lo-
calize TGD2 in isolated plastids, it was ob-
served that the bulky green fluorescent protein
fused to the TGD2 wild-type protein and the
tgd2-1 mutant protein by itself were accessi-
ble to Trypsin, whereas the functional wild-type
TGD2 protein by itself was inaccessible (Awai
et al. 2006). Current efforts to dissect the Pt-
dOH binding site of TGD2 and to crystallize
portions of TGD2 are under way (C. Lu and
C. Benning, unpublished).

Whereas the discovery of the TGD1, 2, and
3 proteins have begun to shed light on lipid
transport from the outer to the inner plastid en-
velope membrane, TGD4 is a recently discov-
ered candidate for a protein involved in trans-
fer of lipids from the ER to the outer envelope
(Xu et al. 2008a). The tgd4 mutant of Arabidop-
sis shows all the phenotypes observed for the
other tgd mutants described above. A possible
paralog is present in Arabidopsis, but its inactiva-
tion did not cause any tgd phenotypes (Xu et al.
2008a). Interestingly, only N-terminally green
fluorescent protein–tagged versions of TGD4
restore the wild-type phenotype in the mutant
background, whereas C-terminally tagged ver-
sions do not. The N-terminally tagged TGD4
protein was localized to the ER-network, but it
cannot be ruled out that TGD4 in native form
in vivo is present in the plastid outer envelope
or in ER-plastid contact sites. The number of
ER-plastid contact sites was not affected in the
mutant (Xu et al. 2008a), making it unlikely that
TGD4 promotes their formation. Possible or-
thologs of TGD4 are present in other plants
and green algae, but do not provide any clues
to the function of TGD4. The protein has a po-
tential membrane-spanning domain that is not
clearly predicted by all available algorithms but

could anchor TGD4 in the ER (Figure 4). One
possible function of TGD4 is that it recruits
proteins, for example, a specific phospholipase
D, to an ER-plastid contact site.

The current hypothesis about the synthesis
of the galactolipids by the ER pathway in
Arabidopsis is summarized in Figure 4: TGD4
mediates either directly or indirectly through
interacting proteins the transfer of PtdCho
assembled at the ER to the outer plastid
envelope. At the outer envelope PtdCho has
to be converted to PtdOH to provide the
substrate for the TGD1,2,3 complex. A to-date
unspecified phospholipase D is predicted by
the model and should be localized at the outer
envelope or in ER-plastid contact zones. The
TGD1,2,3 complex mediates the transfer of
PtdOH from the outer envelope to the inside of
the inner envelope membrane where the plastid
PtdOH phosphatase is located. The PtdOH
phosphatase as part of the import process has
not yet been unambiguously identified, but a
promising candidate was recently described
(Nakamura et al. 2007). Substrate channeling
between this transporter and the respective
PtdOH phosphatase is likely because in the
wild type, ER-derived PtdOH is apparently
not available to the competing first enzyme of
PtdGro biosynthesis (CDP-DAG synthase).
On the other hand, a plastid-targeted E. coli
DAG kinase had access to the ER-derived DAG
pool in the transgenic plants leading to the
biosynthesis of unusual ER-derived PtdOH and
PtdGro molecular species (Fritz et al. 2007).

The DAG present in the inner envelope
regardless of its origin is available as substrate
to the MGDG synthase MGD1 located at the
intermembrane surface of the inner envelope.
This enzyme in turn provides MGDG to the
DGDG synthase on the cytosolic side of the
outer envelope membrane. A conflicting ob-
servation is the already mentioned low PtdOH
phosphatase activity observed in C18:3 plant
chloroplasts (Frentzen et al. 1983, Heinz &
Roughan 1983), because these plants entirely
rely on ER-derived lipids for the biosynthesis
of galactoglycerolipids. One could argue that
a PtdOH phosphatase activity that channels
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ER-derived PtdOH from the proposed
TGD1,2,3 complex to the DAG pool in the
inner envelope is not accurately measurable
in isolated plastids. It has also been reported
that the major MGDG synthase activity in
the C18:3 plant pea is associated with the
outer envelope membrane based on assays
with chloroplast fractions (Cline & Keegstra
1983). If this in vitro activity represents
the in vivo situation in pea, the proposed
TGD1,2,3 complex would not be necessary
for galactoglycerolipid biosynthesis in C18:3
plants. However, the TGD2 protein was
identified in plastid envelope preparations of
pea by proteomics (Brautigam et al. 2008),
and rice, which is another C18:3 plant, has a
set of predicted TGD1, 2, 3, and 4 orthologs.
Determining the localization and membrane
topology of the involved proteins in a C18:3
model plant in comparison to the C16:3 model
plant Arabidopsis should provide clues that
explain the differences in the utilization of the
ER and plastid pathways for thylakoid lipid
biosynthesis in these plant groups.

LIPID TRANSFER FROM
THE ENVELOPES TO
THE THYLAKOIDS

Lipids, whether assembled at the outer and
inner envelope membranes of the plastid or
imported from the ER, ultimately have to
be delivered to the thylakoids. A vesicular
mechanism has been proposed based on ultra-
structural observations (von Wettstein 2001),
specific inhibitors (Westphal et al. 2001b), or ar-
rest of vesicle transfer under low temperatures
(Morre et al. 1991). Ultrastructural examina-
tion of photosynthetic organisms in lineages
derived from the first photosynthetic eukaryote
suggests that the presence of an intraplastidic
vesicular transport system may be limited to
embryophytes (Westphal et al. 2003). Potential
plastid-targeted protein orthologs of the yeast
secretory pathway are present in plants but have
not yet been investigated in detail (Andersson
& Sandelius 2004). However, genetic analysis

VIPP1: protein
required for thylakoid
formation

has identified at least one protein candidate that
is proposed to be involved in vesicle formation
in plastids. Loss of VIPP1 (vesicle-inducing
protein in plastids 1) in Arabidopsis causes an ab-
sence of thylakoids (Kroll et al. 2001). This pro-
tein is present in bacteria as well, and mutation
in cyanobacteria affects thylakoid formation
(Westphal et al. 2001a). The fact that bacte-
ria generally lack the machinery for vesicular
transport casts doubts on a direct role of VIPP1
in intraplastidic vesicular transport. The VIPP1
protein interacts with chaperone proteins and
forms ring-like structures in vitro (Aseeva
et al. 2004, 2007; Liu et al. 2005, 2007). It also
interacts with other proteins essential for the as-
sembly of the photosynthetic apparatus (Gohre
et al. 2006). However, direct involvement of
VIPP1 in vesicle initiation or its mechanism of
action has not been demonstrated at this time.

There are other examples of proteins appar-
ently involved in thylakoid formation based on
the respective phenotype of the mutant in Ara-
bidopsis, for example, THF1 (thylakoid forma-
tion 1) (Wang et al. 2004). However, this pro-
tein seems to be involved in signaling rather
than in vesicular transport (Huang et al. 2006).
Thus, although multiple lines of evidence sug-
gest a vesicular mechanism for the transfer of
membrane lipids from the inner envelope to
the thylakoids, the exact mechanism and the in-
volved proteins remain to be identified.

Lipid transfer from the envelopes to the thy-
lakoids also needs to be intricately integrated
with overall chloroplast development. Break-
down of the coordination between envelope
membrane formation and lipid transfer was re-
cently observed when an inner membrane pro-
tein (TIC40) was overproduced in tobacco plas-
tids by expression from a transgene inserted
into the plastid genome (Singh et al. 2008).
A striking proliferation of the inner envelope
membrane was observed in these transgenic
plastids. Apparently, increased insertion of an
inner membrane protein led to an increase in
membrane lipid synthesis, but vesicle transfer
from the envelope to the thylakoids was not up-
regulated in this transgenic line.
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ANSWERS TO EMERGING
QUESTIONS
The recent breakthroughs in our understand-
ing of thylakoid lipid biosynthesis and the un-
derlying lipid transport processes, in particular,
the discovery of proteins and genes required for
the process, provide new opportunities for fill-
ing the remaining gaps of knowledge. Proteins
involved in fatty acid export from plastids may
be identified by systematic analysis of Arabidop-
sis mutants disrupted in plastid targeted pro-
teins (e.g., Lu et al. 2008). It may also be possible
to identify fatty acid auxotrophic mutants in the
unicellular algae Chlamydomonas that are dis-
rupted in the export machinery. The intricate
differences in lipid metabolism between C16:3
and C18:3 plants can be explored at the molec-
ular and cellular level by targeting genes, which
are orthologs of those known to be involved in
the C16:3 plant Arabidopsis, in an appropriate
C18:3 plant, for example, rice. The TGD1, 2,
and 3 proteins of Arabidopsis that are involved
in lipid transfer from the outer to the inner en-
velope membrane need to be reconstituted, and
the complex needs to be studied for transport
activity and substrate specificity. Whether this
complex is present in contact zones between the
outer and inner envelopes remains an interest-
ing hypothesis that will require creative means
to test.

Likewise, a possible function of TGD4 in
ER–outer plastid envelope membrane contact
sites can now be investigated by studying the
interaction of this protein with other proteins,
by reconstitution and activity assays in vitro,
and by studying its subcellular localization dy-
namics during leaf development. Finding pro-
teins specifically recruited to these contact sites
would provide markers that would also be help-
ful in studying the possible role of these contact
sites in the export of glycerolipids from plas-
tids under phosphate-limited conditions. The
study of plastid-targeted orthologs of proteins
involved in vesicular transport as part of the
secretory pathway should provide insights into
vesicular lipid trafficking mechanisms between
the inner plastid envelope membrane and the
thylakoids.

As more components of interorganelle lipid
transport in plants are discovered and as more
plant species are compared at the molecular
and cell biological level, the pace of discov-
ery will increase. As we gain a detailed under-
standing of the complex lipid transport pro-
cess between the plastid and the extraplastidic
membranes in different plants, we may dis-
cover that lipid transfer processes provide a
vivid picture of the evolution of the interaction
between the past endosymbiont and the host
cell.

SUMMARY POINTS

1. Under phosphate-limiting growth conditions, plants remodel their membranes to reduce
phosphate bound in phosphoglycerolipids. Chloroplasts export digalactosyldiacylglyc-
erol to substitute phosphoglycerolipids in extraplastidic membranes. Phosphatidylglyc-
erol is substituted with sulfoquinovosyldiacylglycerol in thylakoid membranes.

2. Fatty acids are synthesized in the plastid and are exported from the chloroplast for the
biosynthesis of extraplastidic membranes. Nascent fatty acids appear to be first incor-
porated into phosphatidylcholine by acyl editing. There is no direct precursor-product
relationship between phosphatidic acid and phosphatidylcholine.

3. With some variation depending on the plant species, thylakoid lipids are either derived
from precursors assembled de novo in the plastid or imported from the ER. The ER
pathway is generally present in plants, whereas the plastid pathway is absent in many,
typically more recently evolved, plants. The TGD proteins of Arabidopsis are implicated
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in the ER-to-plastid lipid transfer based on mutant analysis. TGD1, 2, and 3 constitute a
proposed phosphatidic acid transporter at the inner plastid envelope; TGD4 is a unique
plant ER protein with currently unknown molecular function.

4. Vesicular transport between the inner plastid envelope and the thylakoids is proposed.
Predicted plastid-targeted orthologs of proteins involved in the secretory pathway are
present in plants. VIPP1 of Arabidopsis has been implicated in the process, but its role in
vesicle formation at the inner envelope could be indirect.

FUTURE ISSUES

1. Components of the plastid fatty acid export machinery remain elusive, and the mecha-
nism is still under debate. Because all fatty acids for extraplastidic membranes and for
triacylglycerol biosynthesis in oil crops have to be exported from the plastid, this repre-
sents a critical lack of knowledge for an essential cell function. Knowledge of this process
could provide new leads for the engineering of oil crops for the production of fuels and
specialized fatty acid–derived chemicals.

2. Understanding the molecular differences between C16:3 and C18:3 plants, the latter
of which lack the plastid pathway for galactoglycerolipid biosynthesis, could provide
us with an opportunity to observe evolution in progress. The reasons for the exclusive
synthesis of plastid phosphatidylglycerol by the plastid pathway in all plants remain
unclear.

3. How is TGD4 involved in lipid transfer from the ER to the plastid? Is it present in
ER-plastid outer envelope membrane contact sites, and is its location dynamic? What
role do ER-plastid outer envelope membrane contact sites play in the transfer of lipids
from the ER to the plastid, and how is the lipid transfer and lipid synthesis machin-
ery organized in ER-plastid outer envelope and inner envelope membrane contact
sites?
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