Boosting for tumor classification with gene expression data

M. Dettling, P. Buhlmann
<span title="2003-06-12">2003</span> <i title="Oxford University Press (OUP)"> <a target="_blank" rel="noopener" href="" style="color: black;">Bioinformatics</a> </i> &nbsp;
Motivation: Microarray experiments generate large datasets with expression values for thousands of genes but not more than a few dozens of samples. Accurate supervised classification of tissue samples in such high-dimensional problems is difficult but often crucial for successful diagnosis and treatment. A promising way to meet this challenge is by using boosting in conjunction with decision trees. Results: We demonstrate that the generic boosting algorithm needs some modification to become an
more &raquo; ... ccurate classifier in the context of gene expression data. In particular, we present a feature preselection method, a more robust boosting procedure and a new approach for multicategorical problems. This allows for slight to drastic increase in performance and yields competitive results on several publicly available datasets.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1093/bioinformatics/btf867</a> <a target="_blank" rel="external noopener" href="">pmid:12801866</a> <a target="_blank" rel="external noopener" href="">fatcat:i7dge2a3arbr7e42h5gwohitsm</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>