A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit <a rel="external noopener" href="https://watermark.silverchair.com/btf867.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAb0wggG5BgkqhkiG9w0BBwagggGqMIIBpgIBADCCAZ8GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMZ253vIeIY3p8e1KTAgEQgIIBcJCePFLmBYgNCgvrf2I0Grs_YQIl-ZpqhflKUIWjpZ8cZdVGfoOaZo8FlJwWXlZTjXMlpaHDXxcyhULFPq0pLO2Hmv3_bJ6MO1nM57Zhv5lSWf6sl31K4ekSNjWurU0QmA2BaUA6T8ZzXP8SMFhzYE-FexSui6U5FLZiJpBJ5NfeSz3zsYMig65Fonm4NLyNwLSjKWwRXcGQHuQeXFBnExj5gaXkiLx9D5GFPxW5Upf_URyqcFRAt6f1_jl5GNlFHvombM2F1U_Dsb87_hZb7-X0urolTaYqxA-IbZ-UU2IAyBTC1VNwqUDj2i7Tfg4I39q2Hz0p8QQMiPWju3OwyDti-TAprIbv6NmKsbe2fMyf_9P6wMiSPwPLGTfZV8F6RW0wdUJfV4NZaqyWV_7yYZYg7aVP7k8xFWaYrQo-j2BpLbOmaVzbnUFa2DLb9l2d2oQ0_3sjqjS_Y-99v3he2vEgMS5uGyaR274mGY5ul9uO">the original URL</a>. The file type is <code>application/pdf</code>.
Boosting for tumor classification with gene expression data
<span title="2003-06-12">2003</span>
<i title="Oxford University Press (OUP)">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/wmo54ba2jnemdingjj4fl3736a" style="color: black;">Bioinformatics</a>
</i>
Motivation: Microarray experiments generate large datasets with expression values for thousands of genes but not more than a few dozens of samples. Accurate supervised classification of tissue samples in such high-dimensional problems is difficult but often crucial for successful diagnosis and treatment. A promising way to meet this challenge is by using boosting in conjunction with decision trees. Results: We demonstrate that the generic boosting algorithm needs some modification to become an
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1093/bioinformatics/btf867">doi:10.1093/bioinformatics/btf867</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/12801866">pmid:12801866</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/i7dge2a3arbr7e42h5gwohitsm">fatcat:i7dge2a3arbr7e42h5gwohitsm</a>
</span>
more »
... ccurate classifier in the context of gene expression data. In particular, we present a feature preselection method, a more robust boosting procedure and a new approach for multicategorical problems. This allows for slight to drastic increase in performance and yields competitive results on several publicly available datasets.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180729123929/https://watermark.silverchair.com/btf867.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAb0wggG5BgkqhkiG9w0BBwagggGqMIIBpgIBADCCAZ8GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMZ253vIeIY3p8e1KTAgEQgIIBcJCePFLmBYgNCgvrf2I0Grs_YQIl-ZpqhflKUIWjpZ8cZdVGfoOaZo8FlJwWXlZTjXMlpaHDXxcyhULFPq0pLO2Hmv3_bJ6MO1nM57Zhv5lSWf6sl31K4ekSNjWurU0QmA2BaUA6T8ZzXP8SMFhzYE-FexSui6U5FLZiJpBJ5NfeSz3zsYMig65Fonm4NLyNwLSjKWwRXcGQHuQeXFBnExj5gaXkiLx9D5GFPxW5Upf_URyqcFRAt6f1_jl5GNlFHvombM2F1U_Dsb87_hZb7-X0urolTaYqxA-IbZ-UU2IAyBTC1VNwqUDj2i7Tfg4I39q2Hz0p8QQMiPWju3OwyDti-TAprIbv6NmKsbe2fMyf_9P6wMiSPwPLGTfZV8F6RW0wdUJfV4NZaqyWV_7yYZYg7aVP7k8xFWaYrQo-j2BpLbOmaVzbnUFa2DLb9l2d2oQ0_3sjqjS_Y-99v3he2vEgMS5uGyaR274mGY5ul9uO" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/e0/aa/e0aaf6fe6ee9f13efdf3963e0f44b9a4015d2881.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1093/bioinformatics/btf867">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="external alternate icon"></i>
oup.com
</button>
</a>