A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
Compact Sobolev-Slobodeckij embeddings and positive solutions to fractional Laplacian equations

2021
*
Advances in Nonlinear Analysis
*

In this work, we study the existence of a positive solution to an elliptic equation involving the fractional Laplacian (−Δ) s in ℝ n , for n ≥ 2, such as (0.1) ( − Δ ) s u + E ( x ) u + V ( x ) u q − 1 = K ( x ) f ( u ) + u 2 s ⋆ − 1 . $$(-\Delta)^{s} u+E(x) u+V(x) u^{q-1}=K(x) f(u)+u^{2_{s}^{\star}-1}.$$ Here, s ∈ (0, 1), q ∈ 2 , 2 s ⋆ $q \in\left[2,2_{s}^{\star}\right)$ with 2 s ⋆ := 2 n n − 2 s $2_{s}^{\star}:=\frac{2 n}{n-2 s}$ being the fractional critical Sobolev exponent, E(x), K(x),

doi:10.1515/anona-2020-0133
fatcat:p5hw2grswvh4thzzjqenc5jcpe