On the measure of Voronoi cells

Luc Devroye, László Györfi, Gábor Lugosi, Harro Walk
2017 Journal of Applied Probability  
We study the measure of a typical cell in a Voronoi tessellation defined by n independent random points X 1, . . ., X n drawn from an absolutely continuous probability measure μ with density f in ℝ d . We prove that the asymptotic distribution of the measure – with respect to dμ = f(x)dx – of the cell containing X 1 given X 1 = x is independent of x and the density f. We determine all moments of the asymptotic distribution and show that the distribution becomes more concentrated as d becomes
more » ... ge. In particular, we show that the variance converges to 0 exponentially fast in d. We also obtain a bound independent of the density for the rate of convergence of the diameter of a typical Voronoi cell.
doi:10.1017/jpr.2017.7 fatcat:cbrq7lclanek3am7qezhrezv54