New results about the bondage number of a graph

Ulrich Teschner
<span title="">1997</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/civgv5utqzhu7aj6voo6vc5vx4" style="color: black;">Discrete Mathematics</a> </i> &nbsp;
The bondage number b(G) of a nonempty graph G was first introduced by Fink, Jacobson, Kinch and Roberts [3] . Among other results they showed that b(G)~<2 if G is a tree. In this paper we present a characterization of those trees having bondage number 1. Further on we present the first lower bounds for the bondage number and some new sharp upper bounds.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0012-365x(96)00007-6">doi:10.1016/s0012-365x(96)00007-6</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/dem6fvbpszawzafsh2bw3rltnq">fatcat:dem6fvbpszawzafsh2bw3rltnq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190224025901/https://core.ac.uk/download/pdf/82029139.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/16/2e/162e0a33cf2a194fb4d5dc53beaf3079b03fabb0.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0012-365x(96)00007-6"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>