RIoTBench: An IoT benchmark for distributed stream processing systems

Anshu Shukla, Shilpa Chaturvedi, Yogesh Simmhan
2017 Concurrency and Computation  
The Internet of Things (IoT) is an emerging technology paradigm where millions of sensors and actuators help monitor and manage, physical, environmental and human systems in real-time. The inherent closedloop responsiveness and decision making of IoT applications make them ideal candidates for using low latency and scalable stream processing platforms. Distributed Stream Processing Systems (DSPS) hosted on Cloud data-centers are becoming the vital engine for real-time data processing and
more » ... cs in any IoT software architecture. But the efficacy and performance of contemporary DSPS have not been rigorously studied for IoT applications and data streams. Here, we develop RIoTBench, a Realtime IoT Benchmark suite, along with performance metrics, to evaluate DSPS for streaming IoT applications. The benchmark includes 27 common IoT tasks classified across various functional categories and implemented as reusable micro-benchmarks. Further, we propose four IoT application benchmarks composed from these tasks, and that leverage various dataflow semantics of DSPS. The applications are based on common IoT patterns for data pre-processing, statistical summarization and predictive analytics. These are coupled with four stream workloads sourced from real IoT observations on smart cities and fitness, with peak streams rates that range from 500 to 10000 messages/sec and diverse frequency distributions. We validate the RIoTBench suite for the popular Apache Storm DSPS on the Microsoft Azure public Cloud, and present empirical observations. This suite can be used by DSPS researchers for performance analysis and resource scheduling, and by IoT practitioners to evaluate DSPS platforms.
doi:10.1002/cpe.4257 fatcat:rivgwd7jqbdr5gu7lc6rkshzne