A Study On Barreling Behavior During Upsetting Process Using Artificial Neural Networks With Levenberg Algorithm

H.Mohammadi Majd, M.Jalali Azizpour
2011 Zenodo  
In this paper back-propagation artificial neural network (BPANN )with Levenberg–Marquardt algorithm is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on
more » ... curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting process
doi:10.5281/zenodo.1075614 fatcat:2jp5tw4ie5fbrcvo5f3zk2apci