Impact of nuclear inertia momenta on fission observables

P. Tamagno, O. Litaize, U. Köster
2018 EPJ Web of Conferences  
Fission is probably the nuclear process the less accurately described with current models because it involves dynamics of nuclear matter with strongly coupled manybody interactions. It is thus difficult to find models that are strongly rooted in good physics, accurate enough to reproduce target observables and that can describe many of the nuclear fission observables in a consistent way. One of the most comprehensive current modeling of the fission process relies on the fission sampling and
more » ... e-Carlo de-excitation of the fission fragments. This model is implemented for instance in the FIFRELIN code. In this model fission fragments and their state are first sampled from pre-neutron fission yields, angular momentum distribution and excitation energy repartition law then the decay of both initial fragments is simulated. This modeling provides many observables: prompt neutron and gamma fission spectra, multiplicities and also fine decompositions: number of neutrons emitted as a function of the fragment mass, spectra per fragments, etc. This model relies on nuclear structure databases and on several basic nuclear models describing for instance gamma strength functions or level densities. Additionally some free parameters are still to be determined, namely two parameters describing the excitation energy repartition law, the spin cutoff of the heavy and light fragments and a rescaling parameter for the rotational inertia momentum of the fragments with respect of the rigid-body model. In the present work we investigate the impact of this latter parameter. For this we mainly substitute the corrected rigid-body value by a quantity obtained from a microscopic description of the fission fragment. The independent-particle model recently implemented in the CONRAD code is used to provide nucleonic wave functions that are required to compute inertia momenta with an Inglis-Belyaev cranking model. The impact of this substitution is analyzed on different fission observables provided by the FIFRELIN code.
doi:10.1051/epjconf/201819301004 fatcat:b53etp43c5bvdd774ssdgkurxe