A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2008; you can also visit the original URL.
The file type is application/pdf
.
Some two-cardinal results for O-minimal theories
1998
Journal of Symbolic Logic (JSL)
We examine two-cardinal problems for the class of O-minimal theories. We prove that an O-minimal theory which admits some (κ, λ) must admit every (κ′, λ′). We also prove that every "reasonable" variant of Chang's Conjecture is true for O-minimal structures. Finally, we generalize these results from the two-cardinal case to the δ-cardinal case for arbitrary ordinals δ.
doi:10.2307/2586847
fatcat:pvdeye7w3fdmpfnvrebjddtc24