A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
An Algebraic Theory of Complexity for Discrete Optimization
2013
SIAM journal on computing (Print)
Discrete optimisation problems arise in many different areas and are studied under many different names. In many such problems the quantity to be optimised can be expressed as a sum of functions of a restricted form. Here we present a unifying theory of complexity for problems of this kind. We show that the complexity of a finite-domain discrete optimisation problem is determined by certain algebraic properties of the objective function, which we call weighted polymorphisms. We define a Galois
doi:10.1137/130906398
fatcat:m7bdd27ke5fynn6red3t4z4nbq