A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit <a rel="external noopener" href="http://www.iieta.org/download/file/fid/20906">the original URL</a>. The file type is <code>application/pdf</code>.
A Smart Water Metering System Based on Image Recognition and Narrowband Internet of Things
<span title="2019-10-30">2019</span>
<i title="International Information and Engineering Technology Association">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/x6c3xwfadnbefpfn6owxdu3o2y" style="color: black;">Revue d'intelligence artificielle : Revue des Sciences et Technologies de l'Information</a>
</i>
This paper designs a smart water metering system based on Narrowband Internet of Things (NB-IoT) and image recognition. Centering on an STM32F103ZET6 microcontroller unit (MCU), the system mainly consists of an OV7725 camera module, a secure digital (SD) card module, a liquid crystal display (LCD) module, an NB-IoT data transmission module and other peripherals. The original image of the water meter is preprocessed by graying, edge extraction, Otsu's binarization and tilt correction. Then, the
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.18280/ria.330405">doi:10.18280/ria.330405</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/giq7idy33bfthlaslvvtxotp6u">fatcat:giq7idy33bfthlaslvvtxotp6u</a>
</span>
more »
... igits in the preprocessed image are recognized by a convolutional neural network (CNN) model. The effectiveness of the proposed system was verified through an experiment. Our system greatly reduces the workload and simplifies the process of water management, shedding new light on the application of information technology and the AI in water management. Keywords: smart water meter, narrowband internet of things (NBIoT), image processing, convolutional neural network (CNN), digit recognition
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200506140312/http://www.iieta.org/download/file/fid/20906" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/32/32/3232dc3a0cc759cdbbd8c1fb612fd932fffcbd94.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.18280/ria.330405">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="external alternate icon"></i>
Publisher / doi.org
</button>
</a>