Complexity-theoretic aspects of expanding cellular automata

Augusto Modanese
2020 Natural Computing  
The expanding cellular automata (XCA) variant of cellular automata is investigated and characterized from a complexity-theoretical standpoint. An XCA is a one-dimensional cellular automaton which can dynamically create new cells between existing ones. The respective polynomial-time complexity class is shown to coincide with $${\le _{tt}^p}(\textsf {NP})$$ ≤ tt p ( NP ) , that is, the class of decision problems polynomial-time truth-table reducible to problems in $$\textsf {NP}$$ NP . An
more » ... ive characterization based on a variant of non-deterministic Turing machines is also given. In addition, corollaries on select XCA variants are proven: XCAs with multiple accept and reject states are shown to be polynomial-time equivalent to the original XCA model. Finally, XCAs with alternative acceptance conditions are considered and classified in terms of $${\le _{tt}^p}(\textsf {NP})$$ ≤ tt p ( NP ) and the Turing machine polynomial-time class $$\textsf {P}$$ P .
doi:10.1007/s11047-020-09814-2 fatcat:bduj2rk3afbhfjoulw5wokw6ka