A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Learning Equational Theorem Proving
[article]
2021
arXiv
pre-print
We develop Stratified Shortest Solution Imitation Learning (3SIL) to learn equational theorem proving in a deep reinforcement learning (RL) setting. The self-trained models achieve state-of-the-art performance in proving problems generated by one of the top open conjectures in quasigroup theory, the Abelian Inner Mapping (AIM) Conjecture. To develop the methods, we first use two simpler arithmetic rewriting tasks that share tree-structured proof states and sparse rewards with the AIM problems.
arXiv:2102.05547v1
fatcat:gjt2mmtbxvezlehy4za5ll3rs4