Functional Glycosylphosphatidylinositol Anchor Signal Sequences in thePneumocystis cariniiPRT1 Protease Family

Robert J. Palmer, Ann E. Wakefield
2001 American Journal of Respiratory Cell and Molecular Biology  
Pneumocystis carinii is fungus which is a frequent cause of severe pneumonia in immunocompromised individuals. The P. carinii genome contains the PRT1 subtelomeric multigene family that encodes a kexin-like serine protease which is expressed on the surface of P. carinii. Analysis of the sequence of the carboxy-terminal sequence of many copies of PRT1 showed that they contained motifs characteristic of a glycosylphosphatidylinositol (GPI) anchor signal sequence. The ability of the C-terminal
more » ... the C-terminal sequences of PRT1 to direct the addition of a GPI anchor was tested. CD14, a GPI-anchored monocyte glycoprotein antigen, was used as the basis of a heterologous system. CD14 was truncated to remove the carboxy-terminal sequences responsible for GPI-anchor addition. Addition of carboxy-terminal sequences from PRT1 restored high-level surface expression to the truncated CD14. Further, the majority of CD14-PRT1 recombinant protein was removed from the cell membrane by treatment with GPI-specific phospholipase C. These results suggest that the carboxy-terminal residues of most of the members of the PRT1 family of proteases have the potential to form a functional GPI-attachment signal.
doi:10.1165/ajrcmb.25.4.4514 pmid:11694452 fatcat:rghcvsk7jnaedbi4atrfcihf64