Doubly Periodic Traveling Waves in a Cellular Neural Network with Linear Reaction

Jian Jhong Lin, Sui Sun Cheng
2009 Advances in Difference Equations  
Szekeley observed that the dynamic pattern of the locomotion of salamanders can be explained by periodic vector sequences generated by logical neural networks. Such sequences can mathematically be described by "doubly periodic traveling waves" and therefore it is of interest to propose dynamic models that may produce such waves. One such dynamic network model is built here based on reaction-diffusion principles and a complete discussion is given for the existence of doubly periodic waves as
more » ... riodic waves as outputs. Since there are 2 parameters in our model and 4 a priori unknown parameters involved in our search of solutions, our results are nontrivial. The reaction term in our model is a linear function and hence our results can also be interpreted as existence criteria for solutions of a nontrivial linear problem depending on 6 parameters.
doi:10.1155/2009/243245 fatcat:reurslihhbcedkih5zqx5pzznq