An improved key distribution mechanism for large-scale hierarchical wireless sensor networks

Yi Cheng, Dharma P. Agrawal
2007 Ad hoc networks  
Wireless sensor networks are often deployed in hostile environments and operated on an unattended mode. In order to protect the sensitive data and the sensor readings, secret keys should be used to encrypt the exchanged messages between communicating nodes. Due to their expensive energy consumption and hardware requirements, asymmetric key based cryptographies are not suitable for resource-constrained wireless sensors. Several symmetric-key pre-distribution protocols have been investigated
more » ... tly to establish secure links between sensor nodes, but most of them are not scalable due to their linearly increased communication and key storage overheads. Furthermore, existing protocols cannot provide sufficient security when the number of compromised nodes exceeds a critical value. To address these limitations, we propose an improved key distribution mechanism for large-scale wireless sensor networks. Based on a hierarchical network model and bivariate polynomial-key generation mechanism, our scheme guarantees that two communicating parties can establish a unique pairwise key between them. Compared with existing protocols, our scheme can provide sufficient security no matter how many sensors are compromised. Fixed key storage overhead, full network connectivity, and low communication overhead can also be achieved by the proposed scheme.
doi:10.1016/j.adhoc.2006.05.011 fatcat:wwn2ucw2rvhjdoszgj3csh7ciq