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Abstract. Data mining on clinical data has great potential to improve the treatment
quality of hospital and increase the survival rate of the patients. Data-driven prediction
technology strongly hinges on the data collection and analysis of patients’ vital signs.
Deep neural networks are supported by a Recurrent Neural Network (RNN) architecture
with Long Short-Term Memory (LSTM) units, and have achieved state-of-the-art results
in a number of clinical prediction tasks. Recently, the architecture based on attention
mechanism has achieved remarkable success in migration tasks, and has higher comput-
ing power in NLP (Natural Language Processing). In this paper, we recur to hierarchical
attention and encoder-to-decoder based model to automatically learn features from med-
ical records of time series of vital sign, categorical features which include demographics,
hospitalization history, vital sign and laboratory tests. Moreover, instead of working as
a black unexplainable box, we present the approach to extract potential informative risk
factors, thereby helping doctors to make optimal decisions. Experiments show that our
model is effective in extracting meaningful features, while the hierarchical attention mech-
anism can provide a better insight into relationships between different types of medical
time series.
Keywords: Deep learning, Medical electronic time series, Data mining, Attention mech-
anism

1. Introduction. Identifying disease and giving patient treatment timely, accurately
and effectively will give them more opportunities for survival and protect their organ
function maximally. Consolidating and analyzing large databases have the opportunity
to transform the health-care industry. In this paper, we propose to develop and study an
attention-based deep learning framework for existing hospital patient Electronic Health
Records (EHR). Mining the aggregation of such multi-scale multi-source data can lead to
novel tools to facilitate optimized patient-centered, evidence-based decision making can
give the alert when the deterioration is happening or about to happen. Being able to
detect these phases automatically would save many hours of time spent by entomologists
to analyze the patient electronic data manually. A large amount of information in a time
series is hidden in its structure, not only in numerical values. We propose a framework to
effectively train deep architectures to learn hidden discriminant features from the original
time series in an end-to-end manner.

Powered by Recurrent Neural Network (RNN) architectures with Long Short-Term
Memory (LSTM) units, deep neural networks have achieved state-of-the-art results in
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several clinical prediction tasks [1, 2] since it is effective in exploiting long-range depen-
dencies and handling nonlinear dynamics. Despite the success of RNNs, its sequential
natural prohibits parallelized computing, thus making it inefficient particularly when pro-
cessing long sequences [3]. Though many efforts have been done to improve the com-
putational efficiency, some of the limitations still persist. Vaswani et al. [4] argued that
attention mechanism can be effective in sequence-to-sequence modeling tasks without any
recurrence. Also, attention mechanisms can be used to capture dependencies in sequences
without considering their actual distances in the sequence [3].
Weakly-labeled training data may contain extraneous/irrelevant sections. The differ-

ences in the global time series are very subtle. It is very common for medical electronic
data from Wireless Sensor Networks (WSN) to have distortions or invalid due to patient
movement or sensor disconnections, and these are likely to confuse any global measures
of time series. As local features, by introducing attention mechanism, we can be brit-
tle to low level of noise and distortions. By leveraging different degrees of smoothness
in compositional function, deep learning models show the ability to handle dimensional
curses [5].
This paper is organized as follows. Section 2 describes the algorithms employed in the

system, including RNN, attention mechanism. Section 3 introduces the related work in
data mining in medical field and preliminary on attention mechanism. Section 4 presents
the experimental results on several datasets. In Section 5, we form our conclusions.

2. Proposed Model. This section details the proposed clinical risk prediction model
using deep learning for analyzing a large volume of multi dimensional heterogeneous
clinical data. We design a hierarchical structure and two forms of attention for the decoder
as shown in Figure 1. The architecture adopts the typical encoder-decoder structure. In
the encoder, a CNN is used to extract features from each clinical time series (such as
heart rate, temperature and blood pressure which are recorded every minute). LSTM
then is used to capture the long and short dependency in the time series. In the decoding
stage, decoding operates on a hierarchical structure with the hidden states of the LSTM.
Finally, we employ a concatenation layer to combine the information from both vectors
to get the diagnosis prediction.
For each particular patient, there is a corresponding piece of EHR, which consists of

several time series. Assuming we use r variables, the records of the nth patient can be
represented by a sequence of T n tuples

(
tni , x

n
i ∈ R×Rr, i = 1, . . . , T (n)

)
. Here, tni denotes

the time of the ith visit of the nth patient. To minimize clutter, we describe the algorithms
for a single patient and have dropped the superscript n whenever it is unambiguous. The
goal of predictive modeling is to predict the label at each time step yi ∈ {0, 1}s, or at the
end of the sequence y ∈ {0, 1}s. The number of labels s can be more than one.

2.1. Encoder. In the encoder, a CNN with 1-dimensional kernel is used to extract fea-
tures from time series. We use multiple layers of feature maps to convolute the data from
raw-data level to feature level. In the case of multiple time series, the same convolution
operation is applied to each one while keeping the output of the convolution separated
since each time series has its own physical characteristics, and a convolution across differ-
ent time series might negatively affect the extraction of the typical patterns for a specific
one.
CNN features are generally not a good representation of series data. To get the series

aspect of the clinical time series, we apply an LSTM to the features extracted by the
CNN. For the sth time series, we will have hidden state of the LSTM, denoted by Rs =
{rs1, rs2, . . . , rsm}, where m is the number of the hidden states. To simplify the symbol, we
use gs to represent the final hidden state of the LSTM for the sth time series.
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Figure 1. Architecture of the proposed method

By applying CNNs and LSTMs to all the time series, we can obtain a set of the final
hidden states, which is denoted by G = {g1, g2, . . . , gNs}, where Ns is the number of the
time series.

2.2. Hierarchical attention mechanism.

2.2.1. Attention inside time series. Similarly to the work in [6], this form of attention
is done inside time series, which retrieves information from relevant subsequences of a
specific time series. The alignment is done as follows. Suppose that R = {r1, r2, . . . , rm}
is the set of the hidden states of LSTM for the series, and gs is final hidden states. The
similarity between gs and ri (i ∈ {1, 2, . . . ,m}) is calculated by

vi = VT tanh(W1 · gs +W2 · ri) (1)

where W1,W2 ∈ R(d×d), V ∈ Rd. Then vi is normalized as:

αi =
exp(vi)∑
i′ exp (vi

′)
(2)

By weightily averaging over all hidden states, vector pt is calculated by

pt =
∑

s∈[1,Ns]

αiri (3)

2.2.2. Attention between time series. This form of attention is done between time series,
which aligns the final hidden states of the LSTM in each time series and the label of the
patient. The alignment is done as follows. Suppose that P = p1, p2, . . . , pNS

is the set of
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the final states in word level, and yt−1 is the label at the previous time step t − 1. The
similarity between yt−1 and ps (s ∈ 1, 2, . . . , NS) is calculated by

vs = VT tanh(W3 · yt−1 +W4 · ps) (4)

where W3,W4 ∈ Rd×d, V ∈ Rd. Then vs is normalized as:

αs =
exp(vs)∑
s′ exp(vs

′)
(5)

where αs is the weight between (t− 1)th state and the sth time series. It can be seen as
a metric for measuring the importance of their relation. By weighted averaging over all
types of time series, vector mt is calculated by

mt =
∑

s∈[1,Ns]

αsps (6)

2.2.3. Diagnosis prediction. Given the context vector mt and the hidden state Rs, we
employ a simple concatenation layer to combine the information from both vectors to
generate an attention hidden state as follows:

h̃t = tanh (Wc ⌈mt;R
s⌉) (7)

where Wc is the weight matrix. The attentional vector h̃t is fed through the softmax
layer to produce the (t+ 1)th visit information as defined as:

ỹt = Softmax
(
Wsh̃t + bs

)
(8)

2.2.4. Objective function. Here, we use the cross-entropy between the ground truth visit
information yt and the predicted label ỹt to calculate the loss for all the patients as follows:

L(x1, . . . , xT ) = − 1

N

N∑
t=1

(
y⊤t log (ỹt) + (1− yt)

⊤ log (1− ỹt)
)

(9)

2.3. Interpretation. In healthcare, the interpretability of the learned representations of
medical codes and visits is important. We need to understand the clinical meaning of
each dimension of medical code representations and analyze which one is critical to the
prediction. Since the proposed model is based on attention mechanisms, it is easy to find
the importance of each visit for prediction by analyzing the attention scores. For the ith
prediction, if the attention score αj

i is large, then the probability of the (j+1) information
related to the current prediction is high. We employ the simple method proposed in [7]
to interpret the code representations. First, we use ReLU

(
W T

v

)
, a non-negative matrix

to represent the medical codes. Then we rank the codes by values in a reverse order
for each dimension of the hidden state vector. Finally, the top k codes with the largest
values are selected. By analyzing the selected medical codes, we can obtain the clinical
interpretation of each dimension.

3. Related Work. Data mining is another important field of artificial intelligence in
medical field. Medical data has the characteristics of diversity, complexity, redundan-
cy, timeliness and non-normatively. Closely the doctor’s experience and the traditional
statistical analysis cannot get the hidden rules in the data. Methodological support is
provided by extracting implicit information. Early warning system based on data mining
cannot limit the amount of data, expert experience, high-speed computing of comput-
ers, information processing, issue mining, the establishment of intelligent early warn-
ing and auxiliary diagnosis system. A large bunch of work currently exists designed to
tackle these challenges. Linear dynamical system models the linear transition between
consecutive states in time, and can be augmented by Gaussian Process (GP) to provide
more general non-linear modeling on local sequences to deal with the irregular sampling
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issue [8]. Ung et al. [9] used instantaneous state of heart rate to predict atrial fibrillation.
McManus et al. [10] applied time-varying coherence function for atrial fibrillation detec-
tion. Marozas et al. [11] used fusion of irregularity of RR intervals (the time elapsing
between two consecutive R waves in the electrocardiogram) and bigeminy suppression
for Atrial Fibrillation (AF) detection. Lake and Moorman [12] extracted entropy as
feature in very short physiological time series for atrial fibrillation detection. Chen et
al. employed multi-scale convolutional neural networks for time series in [13]. Mao et
al. [14] proposed an integrated data mining approach with the multi-statistical features.
Somanchi et al. [15] extracted features from heterogeneous data source and employed
Support Vector Machine (SVM) as classifier for cardiac arrest early prediction. Kim et
al. [16] used extra physiological variables extracted from an APACHE crital care system.
Almayyan [17] selected discriminative features using Particle Swarm Optimization (PSO)
and several selection techniques to reduce the features dimension. Futoma et al. applied
ANN for predicting early hospital readmission [18]. Wang et al. [19] proposed a cost-
sensitive based multilayer perceptron to predict early readmission prediction. In order to
deal with the multi-variate nature of measurements, Ghassemi et al. [20] proposed using
Gaussian process to transform the records into specific latent space.

Deep architecture with a greater number of layers shows that deep learning can extract
abstract and invariant features for better performance of EHR classification [1]. Deepr
learns how to extract features with CNN with word embedding and max pooling from
medical records [21]. Stacked Denoising Autoencoders (SDA) are used to capture regu-
larities and dependencies in EHR to generate robust patient descriptors used to predict
future patient diseases in [22]. Using SDA deep patient [23] can extract the hierarchical
features and pattern from EHRs data. However, the lack of analyzing the meaning of the
feature makes the model unexplainable. However, heterogeneous property of EHR data
remains one of the key challenges to be addressed [24] and the advantages of evolving deep
learning techniques have not yet been fully utilized. Besides this, most of the representa-
tions are learned in an unsupervised manner, and cannot promise that the reconstructed
feature representations by these deep learning models can finally be useful to supervised
tasks [25].

Aiming at learning representations that preserve spatial, spectral and temporal pat-
terns, Recurrent Neural Networks (RNN) have been used to model EEG data [26]. In
2015, Phung et al. proposed to use LSTMs with additional training strategies for diagnosis
tasks, so as DeepCare [27]. In 2016, Che et al. also introduced RNNs to automatically
deal with missing values [28]. By joint training on all tasks in MIMIC-III datasets,
RNN modeling have been further improved [1]. Doctor AI [29] utilizes sequences of pairs
occurring in each patient’s timeline across multiple admissions as input to a GRU network
to forecast future diagnosis and medical prescriptions. Deep Belief Network (DBN) is
also introduced in classifying patients from normal ones in clinical [30]. By working with
Convolutional Neural Network (CNN), Generative Adversarial Networks (GAN) can also
provide plausible labeled EHR data by mimicking real patient records, to augment the
training dataset in a semi-supervised learning manner [31]. Although deep learning models
can produce accurate predictions, these models are mainly treated as black-box models
that lack interpretability and transparency of their inner working [32], which makes the
clinical warning unreliable. The attention-mechanism based learning is recent trend [33]
for understanding what part of historical information weights more in predicting. The
original attention mechanism proposed in [34] aims at improving the performance of neural
machine translation. When introduced to EHR modeling, attention weights can indicate
the degree to which clinical events the model can predict disease onsets or future events.
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4. Experiment.

4.1. Data description. To evaluate the proposed method, three datasets are adopted,
including the Long-Term AF Database (LTAFDB), the MIT-BIH AF Database (AFD-
B) and one real dataset from Barnes-Jewish Hospital. LTAFDB and AFDB are public
datasets, which could be accessible from [35]. The real dataset is from Washington Uni-
versity School of Medicine and Barnes-Jewish Hospital, one of the largest hospitals in the
United States. The database is from the General Hospital Wards (GHWs) between July
2007 and July 2011.
For general hospital wards, 41,305 patient visits are involved and 2,565 have the out-

come of readmission or not. In this dataset, each patient is measured for 34 indicators,
including demographics, vital signs (pulse, shock index, mean arterial blood pressure,
temperature, and respiratory rate), and lab tests (albumin, bilirubin, BUN, creatinine,
sodium, apotassium, glucose, hemoglobin, white cell count, INR, and other routine chem-
istry and hematology results).

4.2. Results and discussion. For comparison, we follow the way of dataset division
in [9]. The LTAFDB database is used as the training set to determine the model param-
eter, while AFDB is used as the testing sets. Table 1 lists the results on AFDB with six
existing methods, such as Ung et al. [9], McManus et al. [10], Marozas et al. [11], Lake and
Moorman [12], Chen et al. [13]. For RNN, we feed the embedding to GRU and use the
hidden state produced by GRU to get the predicted result. For simplicity, we use Zhou15,
Lee13, Petrenase15, Lake11, MCNN16, RNN, for short to represent the benchmark ap-
proaches. From the result, we could see our proposed hierarchical attention mechanism
based method could improve the detection performance, the accuracy is 98.19%, while
the sensitivity is 98.22% and the specificity is 98.68%.

Table 1. Prediction result on AFDB

Method Accuracy Specificity Sensitivity F1-Score AUC NPV PPV
Lake11 N/A 0.9400 0.9100 0.4200 0.7400 0.8600 0.7700
Lee13 0.9791 0.9768 0.9822 0.6203 0.7840 0.8634 0.7025

Petrenase15 N/A 0.9710 0.9830 0.5235 0.7400 0.8900 0.8100
Zhou15 0.9799 0.9844 0.9783 0.6615 0.7726 0.8614 0.7530
MCNN16 0.9818 0.9811 0.9822 0.6620 0.7832 0.8725 0.7243
RNN 0.9721 0.9536 0.9642 0.5244 0.7622 0.8316 0.7323

Our method 0.9819 0.9868 0.9822 0.6735 0.8044 0.8825 0.8125

For real dataset, we evaluate our method for comparison with existing approaches used
in hospitals, such as Mao et al. [14], Somanchi et al. [15], Kim et al. [16], Almayyan [17],
Futoma et al. [18], Wang et al. [19]. For RNN, we also feed the embedding to GRU and
use the hidden state produced by GRU to get the predicted result. For simplicity, we use
MaoKDD12, SomanchiKDD15, KimHIR14, Almayyan16, Futoma15, Haishuai17, RNN,
for short to represent the benchmark approaches. Table 2 presents the performance of the
different predictive approaches. In comparison to the state-of-the-art baselines on the test
set, we find our model performs significantly better than those traditional feature based
method, such as SomanchiKDD15, MaoKDD12, KimHIR14. Compared to other neural
networks such as convolutional neural network and recurrent neural network, our method
has higher PPV (36%) and AUC (0.70), which means the system creates less false alarms
with high accuracy in predicting.
Besides these, the attention mechanisms make the whole system an explainable system

which can extract potential informative risk factors and risk time series, thereby helping
doctors to make optimal decisions. The attention map could tell which clinical time series
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Table 2. Readmission prediction on the GHWs dataset

Method Accuracy Specificity Sensitivity F1-Score AUC NPV PPV
SomanchiKDD15 0.83 0.85 0.08 0.15 0.53 0.88 0.19

MaoKDD12 0.72 0.86 0.18 0.30 0.52 0.85 0.20
KimHIR14 0.85 0.85 N/A 0.00 0.61 0.89 0.08
Almayyan16 0.84 0.85 0.11 0.19 0.57 0.86 0.15
Futoma15 0.84 0.86 0.23 0.36 0.62 0.87 0.16
Haishuai17 0.87 0.89 0.27 0.41 0.69 0.83 0.35

RNN 0.87 0.88 0.25 0.32 0.66 0.83 0.33
Our method 0.87 0.9 0.28 0.40 0.70 0.88 0.36

plays important roles in causing the alarms and also could be an reference for doctors in
further intervention.

5. Conclusion. In this paper, we have introduced a new framework for real-time medical
stream data classification. Data mining on clinical data not only increases the quality
of health care but also decreases medical expanses. In this paper, we aim to deliver
superior prediction quality, with good interpretability and high computational efficiency.
Taken as a whole, our results demonstrate the promise and widespread applicability of the
hierarchical attention mechanism-based classification for stream data. This way can utilize
the advantage of local information, temporal and global trends of vital medical stream
data. Moreover, attention mechanisms can extract potential informative risk factors and
risk time series period, which can help doctors to make optimal and further decisions.
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