Nr2f1a maintains atrial nkx2.5 expression to repress pacemaker identity within venous atrial cardiomyocytes [article]

Kendall E. Martin, Padmapriyadarshini Ravisankar, Manu E. M. Beerens, Calum A. MacRae, Joshua S. Waxman
2022 bioRxiv   pre-print
AbstractMaintenance of cardiomyocyte identity is vital for normal heart development and function. However, our understanding of cardiomyocyte plasticity remains incomplete. Here, we show that sustained expression of the zebrafish transcription factor (TF) Nr2f1a prevents the progressive acquisition of ventricular cardiomyocyte (VC) and pacemaker cardiomyocyte (PC) identities within distinct regions of the atrium. Transcriptomic analysis of isolated atrial cardiomyocytes (ACs) from nr2f1a mutant
more » ... zebrafish embryos showed increased VC marker gene expression and altered expression of core PC regulatory genes, including decreased expression of nkx2.5, a critical repressor of PC differentiation. At the arterial pole of the atrium in nr2f1a mutants, cardiomyocytes resolve to VC identity within the expanded atrioventricular canal. However, at the venous pole, there is a progressive wave of AC transdifferentiation into PCs across the atrium toward the arterial pole. Restoring Nkx2.5 is sufficient to repress PC identity in nr2f1a mutant atria and analysis of chromatin accessibility identified a Nr2f1a-dependent nkx2.5 enhancer expressed in the atrial myocardium directly adjacent to PCs, supporting that Nr2f1a limits PC differentiation within venous ACs via maintaining nkx2.5 expression. The Nr2f-dependent maintenance of AC identity within discrete atrial compartments may provide insights into the molecular etiology of concurrent structural congenital heart defects and associated arrhythmias.
doi:10.1101/2022.02.24.481762 fatcat:xsjlmkkr45hjzbz3tw6latvkt4