Recurrent Point Review Models

Kostadin Cvejoski, Ramses J. Sanchez, Bogdan Georgiev, Christian Bauckhage, Cesar Ojeda
2020 2020 International Joint Conference on Neural Networks (IJCNN)  
Deep neural network models represent the state-of-the-art methodologies for natural language processing. Here we build on top of these methodologies to incorporate temporal information and model how to review data changes with time. Specifically, we use the dynamic representations of recurrent point process models, which encode the history of how business or service reviews are received in time, to generate instantaneous language models with improved prediction capabilities. Simultaneously, our
more » ... methodologies enhance the predictive power of our point process models by incorporating summarized review content representations. We provide recurrent network and temporal convolution solutions for modeling the review content. We deploy our methodologies in the context of recommender systems, effectively characterizing the change in preference and taste of users as time evolves. Source code is available at [1].
doi:10.1109/ijcnn48605.2020.9206768 dblp:conf/ijcnn/CvejoskiSGBO20 fatcat:rl2ikxllfffwzocjbarorsatq4