Proteolysis on the body surface of pyrethroid-sensitive and resistant Varroa destructor

Aneta Strachecka, Grzegorz Borsuk, Krzysztof Olszewski, Jerzy Paleolog, Zbigniew Lipiński
2013 Acta Parasitologica  
AbstractThe aim of this work was to determine the activity of proteases and protease inhibitors sampled from the body surface of tau-fluvalinate-sensitive and resistant V. destructor. Proteins were isolated from the tau-fluvalinate-sensitive and resistant mites, while mites untreated with tau-fluvalinate constituted the control. Subsequently, the following methodology was applied: protein concentration assay by the Lowry method — as modified by Schacterle and Pollack; assay of proteolytic
more » ... ty in relation to various substrates (gelatine, haemoglobin, ovoalbumin, albumin, cytochrome C, casein) by the modified Anson method; identification of proteolytic activity in relation to diagnostic inhibitors of proteolytic enzymes (pepstatin A, PMSF, iodoacetamide, o-phenantrolin), using the Lee and Lin method; identification of acidic, neutral and basic protease activities by means of the modified Anson method; electrophoretic analysis of proteins in a polyacrylamide gel for protease detection with the Laemmli method and for protease inhibitor detection with the Felicioli method. The highest value of protein concentration was found in the tau-fluvalinate-sensitive V. destructor, while the highest activity levels of acidic, neutral and alkaline proteases were observed in the tau-fluvalinate-resistant mites. Aspartic, serine, thiolic and metallic proteases were found in the drug-resistant and drug-sensitive Varroa mites. The control samples were found to contain aspartic and serine proteases. In an acidic and alkaline environment, the results revealed a complete loss of inhibitor activities in the in vitro analyses and electrophoresis. Serine protease inhibitor activities (at pH 7.0) were high, especially in the group of tau-fluvalinate-resistant mites.
doi:10.2478/s11686-013-0109-y pmid:23377914 fatcat:2qzoi2qxizbmlhuxppdf4mwph4