A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Active learning strategy for online prediction of particle size distribution in cobalt oxalate synthesis process
2019
IEEE Access
Cobalt oxalate synthesis process is a nonlinear batch process. However, the lack of online sensors for the quality variable (e.g., average particle size) has become the main obstacle of controlling the process accurately and optimally. An active learning strategy for selecting the informative training data is proposed to improve the soft sensor prediction performance. First, an initial data set which is collected from the process is used to establish an LSSVR soft sensor model. Second, the
doi:10.1109/access.2019.2907328
fatcat:iujmuhuoz5gcbenvssmj3axf7i