A modulated gradient model for large-eddy simulation: Application to a neutral atmospheric boundary layer

Hao Lu, Fernando Porté-Agel
2010 Physics of Fluids  
The subgrid-scale ͑SGS͒ parametrization represents a critical component of a successful large-eddy simulation ͑LES͒. It is known that in LES of high-Reynolds-number atmospheric boundary layer turbulence, standard eddy-viscosity models poorly predict mean shear in the near-wall region and yield erroneous velocity profiles. In this paper, a modulated gradient model is proposed. This approach is based on the Taylor expansion of the SGS stress and uses local equilibrium hypothesis to evaluate the
more » ... S kinetic energy. To ensure numerical stability, a clipping procedure is used to avoid local kinetic energy transfer from unresolved to resolved scales. Two approaches are considered to specify the model coefficient: a constant value of 1 and a simple correction to account for the effects of the clipping procedure on the SGS energy production rate. The model is assessed through a systematic comparison with well-established empirical formulations and theoretical predictions of a variety of flow statistics in a neutral atmospheric boundary layer. Overall, the statistics of the simulated velocity field obtained with the new model show good agreement with reference results and a significant improvement compared to simulations with standard eddy-viscosity models. For instance, the new model is capable of reproducing the expected log-law mean velocity profile and power-law energy spectra. Simulations also yield streaky structures and near-Gaussian probability density functions of velocity in the near-wall region. It is found that using a constant coefficient of 1 yields a slightly excessive SGS dissipation, which is corrected when the coefficient is modified using the above mentioned correction.
doi:10.1063/1.3291073 fatcat:clbtmysxwjbdrapnrxe5prrfsy