Interaction Manifolds for Reaction Diffusion Equations in Two Dimensions

J. Douglas Wright
2010 SIAM Journal on Applied Dynamical Systems  
We consider a general planar reaction diffusion equation which we hypothesize has a localized traveling wave solution. Under assumptions which are no stronger than those needed to prove the stability of a single pulse, we prove that the PDE has solutions which are roughly the linear superposition of two pulses, so long as they move along trajectories which are not parallel. In particular, we prove that if the initial data for the equation is close to the sum of two separated pulses, then the
more » ... ution converges exponentially fast to such a superposition so long as the distance between the two pulses remains sufficiently large.
doi:10.1137/090770692 fatcat:tigfznglmfdczlwjrj72gbgrgm