Framing QA as Building and Ranking Intersentence Answer Justifications

Peter Jansen, Rebecca Sharp, Mihai Surdeanu, Peter Clark
2017 Computational Linguistics  
We propose a question answering (QA) approach for standardized science exams that both identifies correct answers and produces compelling human-readable justifications for why those answers are correct. Our method first identifies the actual information needed in a question using psycholinguistic concreteness norms, then uses this information need to construct answer justifications by aggregating multiple sentences from different knowledge bases using syntactic and lexical information. We then
more » ... ointly rank answers and their justifications using a reranking perceptron that treats justification quality as a latent variable. We evaluate our method on 1,000 multiple-choice questions from elementary school science exams, and empirically demonstrate that it performs better than several strong baselines, including neural network approaches. Our best configuration answers 44% of the questions correctly, where the top justifications for 57% of these correct answers contain a compelling human-readable justification that explains the inference required to arrive at the correct answer. We include a detailed characterization of the justification quality for both our method and a strong baseline, and show that information aggregation is key to addressing the information need in complex questions.
doi:10.1162/coli_a_00287 fatcat:kqssixxjpbavdc6nimqknvtn74