Searching for genes involved in the adaptation of Drosophila melanogaster to the European climate [thesis]

Nicolas Svetec
The aim of the present work was to identify the genes that played a role in ecological adaptation in D. melanogaster. This species, which originated in Africa, successfully adapted to a broad range of climates during the last 100.000 years. To find the genes involved, I used two different approaches: (1) a genomic region containing several ecologically relevant candidate genes and putatively carrying footprints of selection was investigated using selective sweep mapping, and (2) cold tolerance
more » ... hat might have been an important phenotype for the adaptation to the temperate climates was investigated using a QTL analysis. Using the technique of selective sweep mapping pioneered in the Stephan's group, I detected evidence that recent strong positive selection has been acting on a small DNA region of 2.7 kb overlapping with the 3' end of the HDAC6 gene in the ancestral African population. This gene codes for a newly characterized cell stress surveillance factor. HDAC6 is an unusual histone-deacetylase. It is localized in the cytoplasm and has a ubiquitin-binding and a tubulin-deacetylase activity. These properties make HDAC6 a key regulator of cytotoxic stress resistance. The phenotypic analyses show that the African and the European populations have very strong cold tolerance differences. By removing the effects of the autosomes, I showed that a significant amount of the phenotypic variance is due to genetic factors carried by the X chromosome. These factors were then more precisely mapped to two genomic regions of the X chromosome. By comparing the present results with other association studies and the Gene Ontology database, it was possible to determine a list of candidate genes influencing cold tolerance in D. melanogaster. As this list is limited to a very small number of genes, additional investigations for footprints of selection in these regions may be used to confirm their role in ecological adaptation.
doi:10.5282/edoc.10047 fatcat:yqefjdyerfg5hpustetkzqmwmu