The existence of perfect codes in Doob graphs [article]

Denis S. Krotov (Sobolev Institute of Mathematics, Novosibirsk, Russia)
<span title="2018-10-09">2018</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We solve the problem of existence of perfect codes in the Doob graph. It is shown that 1-perfect codes in the Doob graph D(m,n) exist if and only if 6m+3n+1 is a power of 2; that is, if the size of a 1-ball divides the number of vertices.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:1810.03772v1</a> <a target="_blank" rel="external noopener" href="">fatcat:43rvu7xbxnd3bm533xmqlmvwse</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>