Comparison of the antioxidant potential of antiparkinsonian drugs in different in vitro models

Carine Coneglian de Farias, Kamila Landucci Bonifácio, Andressa Keiko Matsumoto, Luciana Higachi, Rúbia Casagrande, Estefânia Gastaldello Moreira, Décio Sabbatini Barbosa
2014 Brazilian Journal of Pharmaceutical Sciences  
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta. Furthermore, oxidative stress plays a role in PD, causing or contributing to the neurodegenerative process. Currently PD has only symptomatic treatment and still nothing can be done to stop the degenerative process of the disease. This study aimed to comparatively evaluate the antioxidant capacity of pramipexole, selegeline and amantadine in different in
more » ... es and to offer possible explanations on the molecular antioxidant mechanisms of these drugs. In vitro, the antioxidant capacity of the drugs was assessed by the ability of antiparkinsonian drugs to decrease or scavenge ROS in the neutrophil respiratory burst, ability of antiparkinsonian drugs to donate hydrogen and stabilize the free radical 2,2-diphenyl-1-picryl-hydrazyl (DPPH•), to scavenge 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid (ABTS+) and evaluation of the ferric reducing antioxidant power (FRAP). This study demonstrated that both pramipexole and selegiline, but not amantadine, have antioxidant effects in vitro by scavenging superoxide anion on the respiratory burst, donating electron in the ABTS+ assay and presenting ferric reduction antioxidant power. This chemical structure-related antioxidant capacity suggests a possible neuroprotective mechanism of these drugs beyond their already recognized mechanism of action.
doi:10.1590/s1984-82502014000400017 fatcat:bptnpucumrggjizhl732ut7eie