On nonnegative realization of partitioned spectra

Ricardo L. Soto, Oscar Rojo, Cristina B. Manzaneda
2011 The Electronic Journal of Linear Algebra  
We consider partitioned lists of real numbers Λ = {λ 1 , λ 2 , . . . , λn}, and give efficient and constructive sufficient conditions for the existence of nonnegative and symmetric nonnegative matrices with spectrum Λ. Our results extend the ones given in [R.L. Soto and O. Rojo. Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem. Linear Algebra Appl., 416:844-856, 2006.] and [R.L. Soto, O. Rojo, J. Moro, and A. Borobia. Symmetric nonnegative realization of spectra.
more » ... ectron. J. Linear Algebra, 16:1 -18, 2007.] for the real and symmetric nonnegative inverse eigenvalue problem. We also consider the complex case and show how to construct an r × r nonnegative matrix with prescribed complex eigenvalues and diagonal entries.
doi:10.13001/1081-3810.1457 fatcat:c7i5ntxd35dqncgu74vs65mmru