MultiXNet: Multiclass Multistage Multimodal Motion Prediction [article]

Nemanja Djuric, Henggang Cui, Zhaoen Su, Shangxuan Wu, Huahua Wang, Fang-Chieh Chou, Luisa San Martin, Song Feng, Rui Hu, Yang Xu, Alyssa Dayan, Sidney Zhang (+4 others)
2021 arXiv   pre-print
One of the critical pieces of the self-driving puzzle is understanding the surroundings of a self-driving vehicle (SDV) and predicting how these surroundings will change in the near future. To address this task we propose MultiXNet, an end-to-end approach for detection and motion prediction based directly on lidar sensor data. This approach builds on prior work by handling multiple classes of traffic actors, adding a jointly trained second-stage trajectory refinement step, and producing a
more » ... odal probability distribution over future actor motion that includes both multiple discrete traffic behaviors and calibrated continuous position uncertainties. The method was evaluated on large-scale, real-world data collected by a fleet of SDVs in several cities, with the results indicating that it outperforms existing state-of-the-art approaches.
arXiv:2006.02000v4 fatcat:ggn5l4yngjdexms7zbwgtire3a