An open-source and wearable system for measuring 3D human motion in real-time [article]

Patrick Slade, Ayman Habib, Jennifer L Hicks, Scott L Delp
2021 bioRxiv   pre-print
Analyzing human motion is essential for diagnosing movement disorders and guiding rehabilitation interventions for conditions such as osteoarthritis, stroke, and Parkinson's disease. Optical motion capture systems are the current standard for estimating kinematics but require expensive equipment located in a predefined space. While wearable sensor systems can estimate kinematics in any environment, existing systems are generally less accurate than optical motion capture. Further, many wearable
more » ... ensor systems require a computer in close proximity and rely on proprietary software, making it difficult for researchers to reproduce experimental findings. Here, we present OpenSenseRT, an open-source and wearable system that estimates upper and lower extremity kinematics in real time by using inertial measurement units and a portable microcontroller. We compared the OpenSenseRT system to optical motion capture and found an average RMSE of 4.4 degrees across 5 lower-limb joint angles during three minutes of walking (n = 5) and an average RMSE of 5.6 degrees across 8 upper extremity joint angles during a Fugl-Meyer task (n = 5). The open-source software and hardware are scalable, tracking between 1 and 14 body segments, with one sensor per segment. Kinematics are estimated in real-time using a musculoskeletal model and inverse kinematics solver. The computation frequency, depends on the number of tracked segments, but is sufficient for real-time measurement for many tasks of interest; for example, the system can track up to 7 segments at 30 Hz in real-time. The system uses off-the-shelf parts costing approximately $100 USD plus $20 for each tracked segment. The OpenSenseRT system is accurate, low-cost, and simple to replicate, enabling movement analysis in labs, clinics, homes, and free-living settings.
doi:10.1101/2021.03.24.436725 fatcat:f5ydhefnirf6vmnevh5g53ozgi