Tracing Evolutionary Ages of Cancer-Driving Sites by Cancer Somatic Mutations [article]

Xun Gu, Zhan Zhou, Jingwen Yang
2020 bioRxiv   pre-print
Evolutionary understanding of cancer genes may provide insights on the nature and evolution of complex life and the origin of multicellularity. In this study, we focus on the evolutionary ages of cancer-driving sites, and try to explore to what extent the amino acids of cancer-driving sites can be traced back to the most recent common ancestor (MRCA) of the gene. According to gene phylostraigraphy analysis, we use the definition of gene age (tg) by the most ancient phylogenetic position that
more » ... ic position that can be traced back, in most cases based on the large-scale homology search of protein sequences. Our results are shown that the site-age profile of cancer-driving sites of TP53 is correlated with the number of cancer types the somatic mutations may affect. In general, those amino acid sites mutated in most cancer types are much ancient. These sites frequently mutated in cancerous cells are possibly responsible for carcinogenesis; some may be very important for basic growth of single-cell organisms, and others may contribute to complex cell regulation of multicellular organisms. The further cancer genomics analysis also indicates that ages of cancer-driving sites are ancient but may have a broad range in early stages of metazoans.
doi:10.1101/2020.02.09.940528 fatcat:zlskvelnn5clhajnqhbcnstyqq