A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
(Partial) user preference similarity as classification-based model similarity
2014
Semantic Web Journal
Recommender systems play an important role in helping people finding items they like. One type of recommender system is collaborative filtering that considers feedback of like-minded people. The fundamental assumption of collaborative filtering is that people who previously shared similar preferences behave similarly later on. This paper introduces several novel, classification-based similarity metrics that are used to compare user preferences. Furthermore, the concept of partial preference
doi:10.3233/sw-130099
fatcat:2qyi243ctfb2tk6mo6d3nbn7qe