Optimasi Convolutional Neural Network Untuk Deteksi Covid-19 pada X-ray Thorax Berbasis Dropout
I Gede Totok Suryawan, I Putu Agus Eka Darma Udayana
2022
Jurnal Teknologi Informasi dan Ilmu Komputer
<p class="Body">Pandemi COVID-19 yang melanda Indonesia sejak pertengahan tahun 2020 telah memberikan dampak luar biasa pada infrastruktur medis di Indonesia. Angka rata-rata penyebaran virus COVID-19 yang cukup tinggi membuat monitoring bed occupancy rate menjadi sebuah tantangan tersendiri. Dengan adanya penetrasi Artificial Intelligence yang tepat pada sistem medis di Indonesia, diharapkan dapat membantu terjadinya transfer knowledge antar paramedis menjadi lebih efektif. Salah satunya
more »
... menggunakan Deep learning yaitu Convolutional Neural Network (CNN) yang sudah terbukti merupakan salah satu metode yang dapat digunakan untuk melakukan skrining pasien dan mendeteksi COVID-19. Namun untuk melatih sebuah classifier CNN yang ampuh dan siap digunakan di dunia nyata membutuhkan computing power yang besar dan umumnya training rate yang lama. Penelitian ini bertujuan untuk membuat arsitektur jaringan syaraf tiruan berbasis deep learning yang lebih cepat dan efisien dengan pembuatan network yang lebih ramping sehingga lebih mudah dibuat oleh orang lain tanpa harus memiliki computing power yang besar. Metode yang digunakan adalah dengan menyisipkan dropout layer pada sistem jaringan syaraf tiruan. Metode ini akan memaksa sistem untuk belajar memakai rute yang tersingkat dengan cara menghilangkan beberapa node secara acak. Arsitektur ini kemudian diuji pada data ronsen thorax penyintas COVID-19 dan kemudian dibandingkan dengan arsitektur lainnya yang sama-sama memakai pendekatan deep learning. Setelah ditraning menggunakan 500 data COVID-19 thorax X-Ray public database dan diuji dengan jumlah data yang sama, classifier yang menggunakan arsitektur ini mampu menghasilkan akurasi sebesar 95,20%, precision 94,80%, recall 95,58%, specificity 94,88%, NVP sebesar 95,60%, F-Score sebesar 95,18 dan dapat menghemat waktu training sampai 62% dibandingkan dengan arsitektur deep learning lainnya.</p><p class="Body"> </p><p class="Judul2"><strong>Abstract</strong></p><p>The COVID-19 pandemic that hit Indonesia in mid-2020 had a tremendous impact on medical infrastructure in Indonesia. The virus made monitoring the bed occupancy rate became a challenge in itself. New approach can be taken to fight the crisis. The Convolutional Neural Network (CNN), which has proved to be one of the methods that can use to screen patients and detect COVID-19.also have its own problem because it requires enormous computing power and generally a long training rate. Therefore, this study aimed to tackle that problem by creating a leaner network. Thus, it is easier for others to build without having enormous computing power. The method used was to insert a dropout layer on the artificial network system. This method will force the system to learn using the shortest route by eliminating some nodes at random. Then, this architecture was tested on chest X-ray data of COVID-19 survivors and compared with other architectures that both used a deep learning approach. It proved that when this system was tested with COVID-19 thorax x-ray public database data, the classifier that used this architecture could achieve an accuracy rate of 95.20% followed by precision and recall value reaching 94.80% and 94.80%. respectively and last but not least F-score of 95.18% and Negative Predictive value of 95.60% It could also save training time up to 62% compared to other deep learning architectures. Using dropout layers proved could produce more efficient layers and more powerful classifiers while keeping training time to a minimum.</p>
doi:10.25126/jtiik.2022935143
fatcat:ocb5ul6hubffzeflrcecardbeu