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Tilted fiber phase gratings
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A detailed theoretical treatment is presented of bound-mode to bound-mode Bragg reflection and bound-mode
to radiation-mode coupling loss in a tilted optical-fiber phase grating. Numerical predictions of the effects of
grating tilt on the spectral characteristics of such a grating are calculated. These predictions are compared
with experimentally measured spectra of strong gratings written by ultraviolet irradiation of deuterium-
sensitized fiber with grating tilt angles ranging from 0± to 15±. Good agreement is obtained between the
theoretical predictions and the experimental results.  1996 Optical Society of America
1. INTRODUCTION

The fiber phase grating written by ultraviolet (uv) light
into the core of an optical fiber has found many use-
ful applications as a wavelength-selective, guided-mode
reflector.1 An important but often less advertised func-
tion of the fiber grating is its ability to couple a guided
mode to radiation modes of the fiber. This function is
sometimes a nuisance, particularly when a complex filter
utilizing strictly grating reflection is desired.2 However,
radiation-mode coupling can be used to advantage for
fiber taps3 and broadband filters.4 Whether radiation-
mode coupling is desirable or not, it is useful to under-
stand its origin. A recent paper by Mizrahi and Sipe
describes the basic formalism for understanding bound-
mode to radiation-mode coupling in a fiber phase grating.5

Since the first reported discussions of radiation-mode
coupling in fiber gratings, it has been recognized that
this coupling can be enhanced and to some extent con-
trolled if a tilt is provided in the fringes of the phase
grating.3,4 This result is obvious from a ray picture of
the operation of the grating, in that the tilt functions
as a blaze. This picture most clearly demonstrates the
ability of a tilted grating to control the directionality of
bound-mode to radiation-mode coupling.3 From a mode
picture it is likewise clear why radiation-mode coupling
should be enhanced in a tilted grating—with simple sym-
metry arguments one can show that a LP01 bound mode
in an untilted grating can couple only to LP radiation
modes with azimuthal quantum numbers 0 and 2; in the
presence of a tilted grating coupling to all odd radia-
tion modes and all other even radiation modes is allowed
as well. In addition simply to enhancing the maximum
radiation-mode coupling, variation of grating tilt affects
the width of the loss spectrum, the separation of the wave-
length region at which maximum radiation-mode coupling
occurs from that at which Bragg reflection occurs, and
the Bragg reflection spectrum. The last of these is of
great importance for filter applications that cannot tol-
erate any reflection, for which the ability of grating tilt to
0740-3232/96/020296-18$06.00 
diminish Bragg reflection while simultaneously enhanc-
ing radiation-mode coupling is advantageous.4

In this paper we extend the basic formalism outlined
earlier5 to include tilted fiber phase gratings. Our mo-
tivation for developing this theory is to enable the de-
sign of filters based on the scattering of a forward-going
bound mode into backward-going radiation modes. How-
ever, tilted fiber gratings are also important for devices
based on bound-mode to bound-mode coupling in both the
copropagating and counterpropagating cases and for de-
vices that couple a bound mode into copropagating radia-
tion modes. For the former case the grating tilt enables
coupling between bound modes of dissimilar azimuthal
symmetry,6 and the effects of grating tilt in the latter
case are analogous to those mentioned above regard-
ing counterpropagating bound-mode to radiation-mode
coupling. We will not specifically consider the copropa-
gating coupling (long-period grating) case here, but the
formalism that we present can easily be extended to in-
clude this case.

In a normal step-index fiber with a finite glass cladding,
coupling can occur between the bound core mode and the
bound cladding modes of the fiber. These effects are not
considered here; we consider only coupling between the
bound core mode and the continuum of radiation modes
in a fiber with an infinite cladding. Experimentally, the
behavior of a bound core mode in an infinite-cladding
fiber can be approximately realized by a fiber immersed
in or coated with a medium of refractive index equal to or
higher than that of the cladding.

We describe in detail in Section 2 the derivation of
the coupled-amplitude equations used in this manuscript.
The equations are exact, except for one clearly defined
approximation that assumes that the refractive index
modulation is much smaller than the mode index. In
Section 3 we utilize the coupled-amplitude equations to
investigate Bragg scattering in the presence of a tilted
grating. In addition to a derivation of the theoretical
formalism, numerical calculations are described and
compared with experimental measurements of the de-
1996 Optical Society of America
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pendence of grating reflectivity on tilt angle for strong
gratings written in a step-index fiber. Section 4 de-
scribes the theory behind bound-mode to radiation-mode
coupling in a tilted grating. Specific attention is paid
to the evolution of a bound mode through the grating, with
the radiation modes serving as a channel through which
the bound mode loses energy. The treatment closely par-
allels that of spontaneous emission of an atom from its ex-
cited state, first described by Wigner and Weiskopff. In
Section 5 the extinction coefficients that describe the loss
of bound-mode energy to radiation modes are described
in detail. Section 6 contains numerical predictions of
the dependence of radiation-mode loss spectra on grating
tilt angle based on the theory described in the previous
sections. These predictions are again compared with ex-
perimental measurements of transmission spectra from
gratings written with tilt angles ranging from 0± to 15±.
Finally, conclusions are drawn in Section 7.

2. MODE AMPLITUDE EQUATIONS
In this section we derive the equations for the spatially
varying amplitudes of the bound and radiation modes of
an ideal fiber in the presence of a variation in the local in-
dex of refraction that is due to a grating structure. The
technique is an extension of a method employed earlier
by one of us7 to consider coupling between bound modes
in planar waveguide structures, and in fact the results
of this section hold quite generally for any guiding struc-
ture. Treatments of coupling between modes of a guiding
structure abound (see, e.g., Ref. 8), but the Green-function
approach employed here has the advantage that the ef-
fect of source polarizations on the mode amplitudes [see
Eqs. (2.12) below] is described exactly.7 For the prob-
lem of interest here, where the source polarization is due
to a grating, the resulting coupled-amplitude equations
[Eqs. (2.21) and (2.22) below] are similarly essentially ex-
act and do not appear to have been written down before.
With such exact equations as a starting point it is easier
to keep track of the subsequent approximations (see Sec-
tions 3–5) necessary and desirable to construct a concise
treatment of the phenomena of interest.

We consider fields oscillating at frequency v and intro-
duce a field amplitude E for the electric field ´́́:

´́́sR, td ­ EsRdexps2ivtd 1 c.c . (2.1)

Choosing the fiber axis to lie along the z axis, we find
it convenient to denote separately the electric-field com-
ponent along this axis, Ezsx, y, zd, and the components
transverse to it,

Etsx, y, zd ­ x̂Exsx, y, zd 1 ŷEy sx, y, zd . (2.2)

Adopting the same notation for the magnetic field, we
schematically denote the electromagnetic field amplitude
by F sx, y, zd, identifying the different components in a
column vector as follows:

F sx, y, zd ­

0BBBBB@
Ezsx, y, zd
Hzsx, y, zd
Etsx, y, zd
Htsx, y, zd

1CCCCCA . (2.3)
Consider first an ideal fiber, where the index of refrac-
tion depends only on x and y and often in fact only onp

x2 1 y2. The types of modes here9 can be labeled by
sa, pd. The variable a can be discrete (indicated by m) or
continuous (indicated by r) and characterizes the propa-
gation of the mode in the z direction. The propagation
constants along the fiber axis we take to be 6bm (dis-
crete modes) or 6bs rd (continuous modes); p specifies any
other degeneracy indices. Thus, to specify a mode and a
direction (propagation in the 1z or 2z direction), we need
a sign s6d as well as sa, pd. The electromagnetic field of
a mode propagating in the 1z direction is of the form0BBBBB@

E1z
ap sx, yd

H 1z
ap sx, yd

E1t
apsx, yd

H1t
apsx, yd

1CCCCCAexpsibazd ;

0BBBBB@
ez

apsx, yd
hz

apsx, yd
et

apsx, yd
ht

apsx, yd

1CCCCCAexpsibazd

; f 1
apsx, ydexpsibazd , (2.4)

and that of the corresponding mode propagating in the
2z direction is0BBBBB@

E2z
ap sx, yd

H 2z
ap sx, yd

E2t
apsx, yd

H2t
apsx, yd

1CCCCCAexps2ibazd ;

0BBBBB@
2ez

apsx, yd
hz

apsx, yd
et

apsx, yd
2ht

apsx, yd

1CCCCCAexps2ibazd

; f 2
apsx, ydexps2ibazd . (2.5)

The modes are chosen to be power orthogonal; for discrete
modes we putZ

set
mp 3 htp

m0p0 d ? ẑ ds ­
1
2 Pmpdmm0dpp , (2.6)

for continuous modes we putZ
set

rp 3 htp
r0p0 d ? ẑ ds ­

1
2 Pps rdds r 2 r0 ddpp0 , (2.7)

and we haveZ
set

mp 3 htp
r0p0 d ? ẑ ds ­ 0, etc. (2.8)

The r that appears in Eq. (2.7) and as a label of the
continuous modes is taken as usual9 to be

r ­
p

ncl
2k2 2 b2 , (2.9)

where k ; vyc and ncl is the index of refraction of the
(outermost) cladding. Here the Pmp and Pps rd are nor-
malization constants; integrals over ds ; dxdy [as in
Eqs. (2.6)–(2.8) and below] range over the x–y plane;
d indicates a Kronecker delta or Dirac delta function, as
the argument(s) are discrete or continuous, respectively.
Our notation largely follows that of Ref. 9, but with the
following exceptions: we use the 2ivt convention rather
than the 1ivt convention [Eq. (2.1)]; we explicitly indi-
cate the 6 propagation direction of the modes (so our
ba ’s are always positive); and we use no factor of 1y2
in Eq. (2.1), inserting it instead in Eqs. (2.6) and (2.7).
We have assumed that the index of refraction is real but
otherwise an arbitrary function of x and y, n0sx, yd. As
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have most workers, we neglect any effects associated with
evanescent radiation modes of the fiber.9

Now consider the ideal fiber in the presence of a per-
turbation that is due to a source polarization, a dipole
moment per unit volume P sRd not described implicitly by
n0sx, yd. The field that is due to this polarization can es-
sentially be found exactly, a calculation that is outlined
in Appendix A. It consists of two parts; one is an elec-
tric field EdsRd given simply by

Edsx, y, zd ­
2ẑP zsx, y, zd

e0n0
2sx, yd

, (2.10)

and the rest can be written as a superposition of modes
of the ideal fiber, but with spatially varying amplitudes.
The latter we call the modes part of the field, and it is
given by

F sx, y, zd ­
P
ap

ã1
apszdf 1

apsx, ydexpsibazd

1
P
ap

ã2
apszdf 2

apsx, ydexps2ibazd , (2.11)

where the mode coefficients satisfy

dã1
apszd
dz

­
iv

Pap
exps2ibazd

Z
Psx, y, zd ? E1p

ap sx, ydds ,

dã2
apszd
dz

­
2iv

Pap
expsibazd

Z
Psx, y, zd ? E2p

ap sx, ydds ,

(2.12)

and the integrals range over the x–y plane.
Up to this point the expressions that we have derived

for the two components [Eqs. (2.10 and (2.11)] of the elec-
tromagnetic field generated by the source polarization are
completely general; the source polarization could be due to
any of a number of physical effects, including optical non-
linearities or corrugations in the interfaces. We have, as
mentioned, omitted the evanescent radiation modes from
the analysis, but even with that omission the expressions
for the mode components that we have included are exact.
Now we specialize to a source polarization that is due to
a grating structure in the fiber; that is, we take

Psx, y, zd ­ e0DxEsx, y, zd , (2.13)

where Dx is a variation in the susceptibility, the posi-
tion dependence of which we specify presently, and the
electric field indicated is the full electric field. We put
Dx ; 2n̄Dnsx, y, zd, where Dnsx, y, zd is a spatially vary-
ing effective refractive index and n̄ is a reference refrac-
tive index. For small variations in the dielectric constant
these may of course be taken to be the actual spatially
varying refractive index and, say, the cladding index of
refraction, respectively. Then we have

Psx, y, zd ­ 2e0 n̄Dnsx, y, zdEsx, y, zd

­ 2e0n̄Dnsx, y, zdfEmodessx, y, zd 1 Edsx, y, zdg ,

(2.14)

where in the second of Eqs. (2.14) we have written the
electric field as the sum of the two parts discussed above,
the modes subscript indicating the portion of the field
from Eq. (2.11). Now, splitting the polarization into its
component along the fiber axis and those components
perpendicular to the axis and using Eq. (2.10), we may
write

P tsx, y, zd ­ 2e0n̄Dnsx, y, zdEt
modessx, y, zd ,

P zsx, y, zd ­
2e0n̄Dnsx, y, zdEz

modessx, y, zd

1 1
2n̄Dnsx, y, zd

n0
2sx, yd

. (2.15)

For simplicity we now assume that the variation in the
(effective) refractive index is small compared with the
local index in the ideal fiber, i.e., Dnsx, y, zd ,, n0sx, y, zd.
Even in the strongest fiber gratings written to date, this is
a good approximation. Then, neglecting the Dnsx, y, zd
term in the denominator of the second of Eqs. (2.15), we
find

Psx, y, zd . 2e0n̄Dnsx, y, zdEmodessx, y, zd , (2.16)

which is the form that we use for the source polarization,
taking the effective variation in the refractive index to be
in fact the actual variation. We now specify the general
form of that variation.

The gratings of interest to us here are written by the
interference of two coherent ultraviolet beams. The spa-
tially varying uv intensity leads, by a process not yet com-
pletely understood, to a rise in the refractive index that, at
least to good approximation, is highest where the local in-
tensity is highest. In the usual instance of a pure silica
cladding the index change occurs only in the fiber core.
Thus we introduce a function z sx, yd, which is equal to
unity in the fiber core and vanishes elsewhere, and write

Dnsx, y, zd
n̄

­ z sx, ydhsz0 d , (2.17)

where hsz0 d is a function that specifies the index variation
in the fiber core. We consider a geometry in which the
wave vector associated with the interference of the two
beams makes an angle u from the fiber axis and lies in
a plane that we take to be the x–z plane (see Fig. 1).
Thus the natural variable for the function hsz0 d is z0 ­
z cos u 1 x sin u. Now, on the length scale set by the
interference wave vector, the intensity of the uv light will
be a slowly varying function of position that is due, for
example, to the shape of the writing beams. We also
wish to allow for possible chirping of the grating. Thus,
for the function hsz0 d, we take

hsz0 d ­ s̄sz0 d 1 2k̄sz0 dcosf2Kgz0 1 f̄sz0dg . (2.18)

Fig. 1. Diagram of the core of a step-index optical fiber showing
a tilted fiber phase grating and definitions used in the analysis.
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Here 2Kg is the nominal wave number of the grating,
and the function f̄sz0 d, assumed to be slowly varying
on a length scale set by the nominal wave number, can
describe a position-dependent chirp. The other slowly
varying functions, 2k̄sz0 d and ¯ssz0 d, describe the grating
amplitude and the concomitant slowly varying perturba-
tion in the background index of refraction that accom-
panies the grating writing5; the unsightly factor of 2 in
the grating amplitude is introduced to ensure a simple
form for later equations [see, e.g., Eqs. (2.21) and (2.22)].
Higher Fourier components (i.e., multiples of 2Kg) are ne-
glected. They can have two physically distinct effects:
First, they will lead to scattering associated with mul-
tiples of 2Kg; this can be described simply by the addition
of more terms to Eq. (2.18) but will not be important at
the wavelengths of interest in this paper. Second, they
will modify the scattering associated with the fundamen-
tal wave number 2Kg (Ref. 10); these effects can be in-
cluded in the coupled-mode equations that we derive in
Section 3, but at grating strengths of current interest they
will be small [see the discussion after Eqs. (3.1)]. Thus
it is sufficient to restrict ourselves to Eq. (2.18).

Since hsz0 d is required only at points in the fiber core
[see Eq. (2.17)], it is permissible in the slowly varying
functions to put z0 ­ z cos u 1 x sin u ø z cos u. Fur-
ther, to simplify the notation, we define corresponding
unbarred functions,

sszd ; s̄sz cos ud, fszd ; f̄sz cos ud ,

kszd ; k̄sz cos ud, kcszd ; kszdexpfifszdg , (2.19)

in terms of which we write the source polarization (2.16),

Psx, y, zd ­ 2e0n̄2z sx, ydhsszd 1 kcszd

3 expf2iKsz 1 x tan udg

1 kp
c szdexpf22iKsz 1 x tan udgj

3 Emodessx, y, zd . (2.20)

Here 2K ; 2Kg cos u is the grating wave-vector compo-
nent along the fiber axis. Now, inserting Eq. (2.20) in
Eqs. (2.12) and expanding the field that is due to the
modes, we find a set of coupled-amplitude equations. For
modes going to the right s1zd we find that

b̄21 da1
a

dz

­ isszd

(X
a0

g11
aa0 a1

a0 szdexpfisba0 2 badzg

1
X
a0

g12
aa0 a2

a0 szdexpfis2ba0 2 badzg

)

1 ikcszdexps2iKzd

(X
a0

m
11
aa0 a1

a0 szdexpfisba0 2 badzg

1
X
a0

m
12
aa0 a2

a0 szdexpfis2ba0 2 badzg

)

1 ikp
c szdexps22iKzd

(X
a0

n
11
aa0 a1

a0 szdexpfisba0 2 badzg

1
X
a0

n
12
aa0 a2

a0 szdexpfis2ba0 2 badzg

)
, (2.21)
and for modes going to the left we obtain

b̄21 da2
a

dz

­ 2isszd

(X
a0

g21
aa0 a1

a0 szdexpfisba0 1 badzg

1
X
a0

g22
aa0 a2

a0 szdexpfis2ba0 1 badzg

)

2 ikcszdexps2iKzd

(X
a0

m
21
aa0 a1

a0 szdexpfisba0 1 badzg

1
X
a0

m
22
aa0 a2

a0 szdexpfis2ba0 1 badzg

)

2 ikp
c szdexps22iKzd

(X
a0

n
21
aa0 a1

a0 szdexpfisba0 1 badzg

1
X
a0

n
22
aa0 a2

a0 szdexpfis2ba0 1 badzg

)
. (2.22)

Here, for simplicity, we adopt a shorthand for indicating
the set of indices characterizing the mode type, using a

and a0, for example, to denote sa, pd and sa0, p0 d. We
have also introduced mode amplitudes defined without
the power normalization factor,

a6
a ;

q
1
2 Pa ã6

a , (2.23)

and a reference wave number

b̄ ;
v

c
n̄ . (2.24)

The coupling constants appearing in Eqs. (2.21) and (2.22)
that mediate the interaction between the modes that is
due to the slowly varying perturbation in the background
index of refraction are

g
ij
aa0 ;

2n̄ce0p
PaPa0

Z
Eip

a sx, yd ? z sx, ydE j
a0 sx, ydds , (2.25)

where i and j can be 1 or 2. Likewise, the coupling
constants that mediate the interaction that is due to the
12K component of the grating [see Eq. (2.20)] are given
by

m
ij
aa0 ;

2n̄ce0p
PaPa0

Z
Eip

a sx, ydexpf2iKxstan udg

? z sx, ydE j
a0 sx, ydds , (2.26)

and those that mediate the interaction that is due to the
22K component of the grating are given by

n
ij
aa0 ;

2n̄ce0p
PaPa0

Z
Eip

a sx, ydexpf22iKxstan udg

? z sx, ydEj
a0 sx, ydds . (2.27)

For an untilted grating (u ­ 0; see Fig. 1) we have g
ij
aa0 ­

m
ij
aa0 ­ n

ij
aa0 , but more generally the constants can be quite

different.
The coupled-amplitude equations (2.21) and (2.22)

are the main result of this section. Except for the mi-
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nor approximation involved in replacing Eq. (2.18) with
Eqs. (2.19) and the neglect of the evanescent radiation
modes, they are exact. However, insofar as they involve
a sum over an infinite number of modes, they are in-
tractable. In the following sections we simplify them,
using the physically appropriate approximations, to treat
the various phenomena of interest.

3. BRAGG SCATTERING
Perhaps the simplest scattering geometry involves a grat-
ing wave number 2K adjusted to scatter a discrete mode
propagating to the right s1zd to the corresponding discrete
mode propagating to the left s2zd. We consider this, the
geometry of Bragg scattering, in this section. For sim-
plicity we will adopt the LP approximation for the fiber
modes, appropriate for the weakly guiding fibers of inter-
est in optical communications, and further approximate
the refractive index profile n0sx, yd as varying stepwise
at a radius a from a core index ncore to a cladding index
ncl; we take the cladding to be infinite in extent. The
electromagnetic field profiles associated with these modes
[Eqs. (2.4) and (2.5)] are given in a number of texts.9

Of primary interest is the lowest (and often only) dis-
crete mode LP01. Here we use the discrete index a ­
m ­ s01d, reserving the index p to label the two polariza-
tions. In the simplest case of untilted gratings su ­ 0d,
which we consider first, symmetry prohibits scattering
from a mode of one polarization to that of another. Then
the coupling constants that will be of interest are

g22
01;01 ­ g11

01;01 ­
2n̄ce0

P01

Z
E1p

01 sx, yd ? z sx, ydE1
01sx, ydds

; gf ,

m12
01;01 ­ sn21

01;01dp ­
2n̄ce0

P01

Z
E1p

01 sx, yd ? z sx, ydE2
01sx, ydds

; gb , (3.1)

where evaluation confirms that both gf and gb are
real. If b01 . K, then the only phase-matched terms in
Eqs. (2.21) and (2.22) are those involving the coefficients
in Eqs. (3.1). The usual heuristic approach is simply to
neglect the non-phase-matched terms. The validity of
this approximation can be investigated with a more rig-
orous calculation,10 which also leads to corrections to that
simple approach; they are generally negligible for grating
strengths of interest, as are the corrections that are due
to higher-order Fourier components [see the comments
after Eq. (2.18)]. But this is a point to which we return
in Section 7. In the usual approximation of keeping only
the phase-matched terms, Eqs. (2.21) and (2.22) reduce to

b̄21 da1
01

dz
­ igf sszda1

01szd 1 igbkszdexpfifszdg

3expf2isK 2 b01dzga2
01szd ,

b̄21 da2
01

dz
­ 2 igf sszda2

01szd 2 igbkszdexpf2ifszdg

3 expf22isK 2 b01dzga1
01szd . (3.2)

The first terms on the right-hand sides of Eqs. (3.2) de-
scribe the forward scattering of each mode, which is due to
the background change in the overall index of refraction
that accompanies the grating formation [see Eq. (2.18)];
the second terms describe the backward scattering, the
Bragg scattering that is due to the grating. If we intro-
duce new variables,

uszd ; a1
01szdexpf 1

2 ifszdgexpf2isK 2 b01dzg ,

vszd ; a2
01szdexpf 1

2 ifszdgexpfisK 2 b01dzg , (3.3)

Eqs. (3.2) take the form

b̄21 du
dz

­ i

"
gf sszd 1 d 2

1
2

b̄21 df

dz

#
uszd

1 igbkszdvszd ,

b̄21 dv
dz

­ 2 i

"
gf sszd 1 d 2

1
2

b̄21 df

dz

#
vszd

2 igbkszduszd , (3.4)

where

d ;
b01 2 K

b̄
(3.5)

specifies the detuning from the Bragg resonance con-
dition. In the weakly guiding approximation we have
b01a . nclkaf1 1 b01sV dDg, where b01sV d is Gloge’s11 nor-
malized propagation constant function, V .

p
2D nclka is

the V number of the mode, and D ; sncore 2 ncldyncl.
Since D ,, 1 and we may take b̄ . K reasonably near
the Bragg resonance, to lowest order in the effective de-
tuning from the Bragg resonance we have

d .
v 2 vBragg

vBragg

, (3.6)

where vBragg is the nominal frequency of the Bragg scat-
tering resonance associated with the scattering wave
number 2K. Thus d can essentially be identified as the
frequency detuning from that resonance.

Equations (3.4) are then seen to take the form of the
usual coupled-mode equations that one would write down
for scattering from a grating in a purely one-dimensional
problem,12 except for the presence of the factors gf and
gb. These factors clearly describe how effective the grat-
ing perturbation is in leading to forward and backward
scattering, respectively. In the weakly guiding limit the
expressions (3.1) for gf and gb can easily be evaluated
with use of the well-known LP01 mode profiles. We find
that gf ­ g 1 g̃ and gb ­ g 2 g̃, where

g ­ b01

"
J0

2sk01ad
J1

2sk01ad
1 1

#
,

g̃ ­
Db01s1 2 b01d

1 1 2Db01

"
1 2

J0sk01adJ2sk01ad
J1

2sk01ad

#
. (3.7)

Here k01 is the wave number characterizing the variation
of the field through the fiber core in the LP01 mode, k01a ­
V

p
1 2 b01. The coefficients of Eqs. (3.7) are plotted in
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Fig. 2. Plots of the two terms g and g̃ that contribute to the for-
ward and backward coupling coefficients gf and gb, respectively,
defined in Eqs. (3.1). Note that g̃ ,, g.

Fig. 2 as a function of V for the choice D ­ 0.0055. With
reference to Eqs. (3.1), it is clear that gf and gb differ
only because of the z component of the electric field in
the LP01 mode. Since this component is typically much
smaller than the transverse components, we expect and
find that, to good approximation, gf ø gb ø g; that is,
to good approximation, the grating is equally efficient in
forward and backward scattering. Further, g is equal to
the fraction of the mode power carried in the core9; since
the grating is by assumption confined to the core of the
fiber, the resulting conclusion that the grating is effective
in scattering to the extent that the fiber mode is confined
to the core is not unexpected.

We now turn to the more complicated problem of tilted
gratings. Referring back to Eqs. (2.25)–(2.27), we see
that the first of Eqs. (3.1) is unmodified by a nonzero u,
but the second is not. The new expression for gb, which
must be used in the coupled-mode equations (3.4), is

m12
01;01 ­ sn21

01;01dp

­
2n̄ce0

P01

Z
E1p

01 sx, ydexpf2iKxstan udg

? z sx, ydE2
01sx, ydds

; gb . (3.8)

For arbitrary u, even with the LP approximation, Eq. (3.8)
can be evaluated only numerically. We find two dif-
ferent expressions, depending on whether the mode is
s-polarized or p-polarized with respect to the grating
(Fig. 1). For the first geometry we find that

sk01ad2J1
2sk01adgbss-polarizedd

2b01

­
Z k01a

0
J0

2sudJ0sVudu du 2
2Ds1 2 b01d
1 1 2Db01

3
Z k01a

0

J1sVud
Vu

J1
2sudu du (3.9)

and for the second we find that
sk01ad2J1
2sk01adgbs p-polarizedd

2b01

­
Z k01a

0
J0

2sudJ0sVudu du 2
2Ds1 2 b01d
1 1 2Db01

3
Z k01a

0
J1

2sudJ0sVudu du 1
2Ds1 2 b01d
1 1 2Db01

3
Z k01a

0
J1

2sud
J1sVud

Vu
u du . (3.10)

In both these expressions V ; s2K tan udyk01. In prac-
tice the two expressions (3.9) and (3.10) differ little over
the small range of u for which their values are signifi-
cant. The second term in Eq. (3.9) and the second and
third terms in Eq. (3.10) result from the z component of
the field in the LP01 mode and lead to contributions that
are small; to good approximation, both gb(s-polarized) and
gb( p-polarized) are given by the first terms in their cor-
responding expressions. In Fig. 3 we show the dropoff
of gb with increasing tilt angle for the following choice
of fiber parameters: core radius a ­ 2.625 mm, cladding
index ncl ­ 1.44, and D ­ 0.0055. These parameters de-
scribe the Corning Flexcore fiber that we used in the
experiments. Unless otherwise noted, all calculations
described below utilize this set of parameters.

We now describe numerical calculations and experi-
mental results that illustrate the range of phenomena
that the coupled-mode equations (3.4) can describe. Note
that regardless of the chirp, or the coupling constants, or
the variation in the grating amplitude and background
index profile, Eqs. (3.4) satisfy energy conservation in the
form

d
dz

fjuszdj2 2 jvszdj2g ­ 0 . (3.11)

That is, the flux of energy through the fiber is uniform.
Thus the reflection and the transmission of the grating
structure, which must in general be calculated by nu-
merical solution of Eqs. (3.4), will always sum to unity.

The coupled mode equations (3.4) must be solved nu-
merically through the fiber profile, and to simplify the

Fig. 3. Plot of backward coupling coefficient versus grating tilt
angle for the fiber parameters described in the text.
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Fig. 4. Calculated maximum grating reflectivity versus grating
tilt angle for gratings with three different index modulations
and assuming s-polarized incident light and the fiber parameters
listed.

calculation, we evaluate gf and gb at the design frequency
and approximate d by relation (3.6). Over the range of
frequencies of interest these approximations are certainly
adequate. Figure 4 shows a calculation of the peak re-
flectivity versus grating tilt angle, u, for several grating
amplitudes: 2k ­ 2.0 3 1023 (dashed), 2k ­ 1.0 3 1023

(solid), and 2k ­ 0.5 3 1023 (dotted). Here the grating
is taken to have 100% modulation [s ­ 2k in Eq. (2.18)]
with a Gaussian profile of full width at half-maximum
(FWHM) of 5 mm, and the design wavelength is 1550 nm.
Note that the locations of the reflectivity nulls are inde-
pendent of grating amplitude. In Fig. 5 calculated re-
flectivity spectra are plotted versus grating tilt angle.
Again, plots are made for grating amplitudes of (a) 2k ­
2.0 3 1023, (b) 2k ­ 1.0 3 1023, and (c) 2k ­ 0.5 3 1023.
The curves in Figs. 4 and 5 were calculated for s polariza-
tion, but curves for p polarization are indistinguishable
on these plots.

The modulation on the short-wavelength side of the
reflectivity spectra occurs even at zero tilt angle and for
gratings with perfect (100%) index modulation and re-
sults from the effective Fabry–Perot cavity formed by the
wings of these Gaussian-profile gratings—it is possible
for short wavelengths to lie within the band gap associ-
ated with the wings but not within the band gap asso-
ciated with the center of the grating, on account of its
higher average refractive index.5 For an untilted grat-
ing a reduction in modulation [2k , s in Eq. (2.18)] ex-
acerbates this effect. In an analogous fashion, because
the presence of a tilt effectively reduces the scattering
associated with the grating amplitude, 2k, but not that
associated with the background index, s [see Eqs. (2.21),
(2.22), and (2.25)–(2.27)], the reflectivity spectra of grat-
ings at high tilt angles are dominated by this Fabry–Perot
modulation.

To investigate the dependence of reflectivity on tilt
angle experimentally, we wrote a set of nominally identi-
cal gratings at various tilt angles. Corning Flexcore fiber
was chosen for these experiments because of its nearly
step-index profile. The fiber had a core radius of approxi-
mately a ­ 2.625 mm and D ­ 0.0055. It was loaded with
approximately 3.8 mol. % of deuterium for enhancement
(a)

(b)

(c)
Fig. 5. Calculated grating reflectivity spectra versus tilt angle
for gratings with three different index modulations and assuming
s-polarized incident light and the fiber parameters listed.
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Fig. 6. Diagram showing rays that represent the two uv beams
incident on the fiber during grating writing and their associated
angles inside and outside the fiber.

Fig. 7. Experimentally measured maximum grating reflectivity
(circles) for gratings written with tilt angles of 0±–15±. The
solid line shows the calculated result.

of its photosensitivity.13 We wrote gratings by inter-
fering two beams from a 242-nm excimer-laser-pumped,
frequency-doubled dye laser producing 15-ns pulses at a
30-Hz repetition rate. Exposures were done with 20 mW
of average power, with the nearly Gaussian beam fo-
cused to a spot size of approximately 5 mm 3 50 mm
on the fiber. Exposure times varied from 1 to 2 min;
the transmission spectrum was monitored in real time to
achieve roughly the same uv-induced index change for all
gratings. However, due to variations in interferometer
alignment from grating to grating, there is a noticeable
variation in both grating modulation and uv-induced
index change among the gratings.

The grating tilt was achieved by rotation of the fiber
about the axis normal to the plane defined by the two
intersecting uv beams (see Fig. 6). Using Snell’s law, one
can write a grating with a design wavelength of l

0
B and

a grating tilt angle of u by using a uv-beam intersection
angle in air of 2aext and an external tilt angle uext given by

2aext ­ arcsinfncl sinsa 1 udg 1 arcsinfncl sinsa 2 udg ,

uext ­
1
2

arcsinfncl sinsa 1 udg 2
1
2

arcsinfncl sinsa 2 udg .

(3.12)
Here 2a is the beam intersection angle inside the fi-
ber, determined from the equation sin a ­ sneffyncldsluvy
l

0
B cos ud, where neff is the effective refractive index of

the bound mode for which the grating is designed. Fig-
ure 7 shows a plot of the experimental results for peak
reflectivity (circles) for tilt angles up to 15± overlaid on
the calculated result (line) for gratings of roughly the
same strength s2k ­ 1.0 3 1023d. As pointed out above,
the imperfect agreement results mostly from alignment
variations.

In Fig. 8(a) the experimentally measured reflectivity
spectra are plotted versus tilt angle, where wavelength
detuning is defined relative to the design wavelength.
All gratings have a measured design wavelength of
roughly but not exactly 1550 nm, since the interferometer
was realigned but not recalibrated before the writing of
each grating. Note that, for reasons of convenience, what
is actually plotted is 1 minus the experimentally mea-
sured transmission. The 0.2-nm resolution of the optical
spectrum analyzer limits the visibility of Fabry–Perot
fringes like those seen in the calculated spectra of Fig. 5.

(a)

(b)
Fig. 8. (a) Experimentally measured grating reflectivity spectra
versus tilt angle, (b) corresponding calculated reflectivity spectra
assuming a 0.2-nm resolution-limited smoothing.
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Fig. 9. Comparison of (a) the calculated reflectivity spectrum
and (b) the measured reflectivity spectrum for a grating with
a 5± tilt angle. No smoothing has been used on the calculated
spectrum.

Therefore, in Fig. 8(b) we replot the theoretical predic-
tions over the range 0±–15±, including smoothing that
would result from a 0.2-nm-resolution measurement.
The measured spectra show good qualitative agreement
with calculated predictions.

A more careful comparison is made for the specific case
u ­ 5± in Fig. 9. Here the theoretically predicted reflec-
tivity spectrum is plotted in Fig. 9(a), and the measured
spectrum with a 0.1-nm spectrum-analyzer resolution is
plotted in Fig. 9(b). Even with a higher measurement
resolution, the longest-wavelength resonance (reflectivity
dip) is not visible on the experimental plot. However,
measurement resolution alone does not account for the
disagreement between the two spectra. The number of
Fabry–Perot resonances on the measured spectrum is
fewer than that on the calculated spectrum. This dis-
crepancy suggests that the actual gratings are shorter
than the 5-mm FWHM used for the theoretical calcula-
tion. Good agreement on the number of Fabry–Perot
resonances can be obtained by the use of 3 mm , FWHM
, 4 mm for the calculation. But the calculated spectrum
for FWHM , 5 mm shows a substantially less steep spec-
tral dependence on the long-wavelength side of the spec-
trum than is actually measured; i.e., the steepness of the
sides of the spectrum agrees best when a FWHM ­ 5 mm
is used for the calculation. Therefore we infer that the
disagreement results from the fact that the actual grat-
ing profiles are not perfectly Gaussian, as assumed for
the calculation.

4. RADIATION-MODE COUPLING
The Bragg scattering treated in the last section is in-
dicated schematically in Fig. 10(a), where along the
horizontal axis we indicate the b of the discrete and
radiation modes in a single-mode fiber assumed to have
an infinite cladding. At shorter wavelengths [Fig. 10(b)]
the same grating can couple a forward-propagating dis-
crete mode into backward-propagating radiation modes,
resulting in the coupling of energy out of the fiber. At
even shorter wavelengths or for a much longer grating
period, as depicted in Fig. 10(c), a grating can couple
a forward-propagating discrete mode into forward-
propagating radiation modes. This last case requires
a grating with a spacing much longer than the wave-
length of light; we do not consider such long-period grat-
ings here, restricting our attention to the radiation-mode
coupling that short-period gratings exhibit, as in the case
of Fig. 10(b).

An alternative way of looking at the various regimes
of bound-mode to radiation-mode coupling is shown in
Fig. 11. Here, for a given choice of grating period, the
solid line represents the maximum allowed wavelength
for a forward-going LP01 mode to couple to a backward-
going radiation mode [see Fig. 10(b)]; the dotted line
represents the minimum allowed wavelength for a
forward-going LP01 mode to couple to a forward-going
radiation mode [see Fig. 10(c)]; and the dashed line
represents the boundary between these two cases, in

Fig. 10. Schematic illustration of three regimes of grating cou-
pling in propagation-constant space: (a) forward bound-mode
to backward bound-mode coupling, (b) forward bound-mode to
backward radiation-mode coupling, (c) forward bound-mode to
forward radiation-mode coupling.

Fig. 11. Plot of the longest wavelength allowed for forward
bound-mode to backward radiation-mode coupling (solid), the
shortest wavelength allowed for forward bound-mode to forward
radiation-mode coupling (dotted), and the boundary wavelength
between forward and backward coupling (dashed), all as a func-
tion of grating period. The fiber parameters used to generate
this plot are those used throughout the manuscript.
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which a LP01 mode may couple to the radiation mode
that propagates normal to the fiber axis. For a grating
with a design wavelength of 1550 nm for LP01-mode
Bragg reflection in Corning Flexcore fiber the maxi-
mum allowed radiation-mode coupling wavelength is
1548.85 nm, and the boundary wavelength between
backward- and forward-going radiation-mode coupling
occurs at 776.75 nm.

In practice the situation is not as simple as that indi-
cated in Fig. 10. For, although the nominal wave num-
ber 2K of the grating connects the forward-propagating
discrete mode either with the backward-propagating dis-
crete mode or with the radiation modes, in fact the broad-
ening of the Bragg resonance that is due to the strength of
the grating and the background rise in the index of refrac-
tion (see Section 3) means that the frequency regions of
radiation-mode coupling and Bragg scattering can over-
lap; and in any case the effect of the background rise
in the index of refraction leads to local modifications of
the b’s of both the discrete and radiation modes. What
is therefore required is in fact a combined treatment of
both Bragg scattering and the effects of radiation-mode
coupling.

The focus of such a treatment can be on either the dis-
crete mode or the generated radiation fields. Here our
emphasis will be on the discrete mode, although the for-
malism developed can be used to calculate the radiated
fields as well. We can anticipate that the coupled-mode
equations (3.4) will be generalized to include an extinc-
tion coefficient describing the loss of energy to the radia-
tion field. In a fiber with a finite cladding the situation
is more complicated. There, for b’s ranging in abso-
lute value between vyc and vnclyc, there exist discrete
cladding modes; energy can couple from the original dis-
crete core mode to the cladding modes and back again,
leading to resonances that mimic the Bragg resonance
peak.5 This range of phenomena we defer to a later
paper. The infinite-cladding geometry that we consider
here is applicable, to good approximation, to a fiber dipped
in index-matching fluid or recoated with an appropriate
polymer coating after the grating is grown.

In our problem of interest, then, the initial state of the
electromagnetic field is the discrete core mode, and the
final states are the continuum of radiation modes. This
bears a striking similarity to the spontaneous emission
of an atom from its excited state, treated many years
ago by Wigner and Weiskopff14; again, the initial state
is discrete, with the atom in an excited state and no
photons present, and the final states are a continuum,
the continuum of one-photon states with the atom in its
ground state. So it is not surprising that our treatment
here will run parallel to the Wigner–Weiskopff analysis
(although of course our problem is purely classical), with
propagation along the fiber axis in our problem taking the
place of evolution in time in the usual Wigner–Weiskopff
analysis. In this approach the approximations involved
are easily identified, the calculation is simple and, we
feel, the most elegant—the radiation fields themselves
tell the discrete mode that it must decay in amplitude
as energy is emitted, since Maxwell’s equations satisfy
energy conservation.

We begin by returning to the general equations
(2.21) and (2.22) and collecting the relevant (i.e., phase-
matched) terms [see the comments after Eqs. (3.1)]. We
use the notation (3.3) to describe the discrete modes,
assuming that both forward- and backward-propagating
modes will be present as a result of possible Bragg scat-
tering. Then, despite the fact that we are in the regime
indicated by Fig. 10(b), both forward- and backward-
propagating radiation modes must be included. Keeping
the appropriate phase-matched terms, we have

b̄21 da2
a

dz
­ 2ikszdexpf2 1

2 ifszdgn21
a;01uszdexpfisb 2 Kdzg ,

b̄21 da1
a

dz
­ ikszdexpf 1

2 ifszdgm12
a;01vszdexpf2isb 2 Kdzg

(4.1)

for the radiation modes, where here we reserve a as a
label for the radiation modes (with propagation constant
b), designating the discrete mode explicitly by (01) (with
propagation constant b01d. Adding the radiation modes
that can be phase matched into Eqs. (3.1), we replace
Eqs. (3.4) by

b̄21 du
dz

­ igszduszd 1 igbkszdvszd 1 ikszdexpf 1
2 ifszdg

3
P
a

m01;aa2
a szdexpfisK 2 bdzg ,

b̄21 dv
dz

­ 2 igszdvszd 2 igbkszduszd 2 ikszdexpf2 1
2 ifszdg

3
P
a

n01;aa1
a szdexpf2isK 2 bdzg , (4.2)

where

gszd ; gf sszd 1 d 2
1
2 b̄21 df

dz
. (4.3)

Consider first Eqs. (4.1). The philosophy of the calcula-
tion is that, like the Bragg scattering, the radiation-mode
coupling will affect the amplitudes uszd and vszd only over
distances that are much greater than b̄21. Thus, with
respect to solving Eqs. (4.1), over distances of the order of
a few b̄21 from z ­ z0, we may write

uszd ø usz0dexpfib̄g0sz 2 z0dg ,

vszd ø vsz0dexpf2ib̄g0sz 2 z0dg ,

fszd ø fsz0d 1

√
df

dz

!
0

sz 2 z0d , (4.4)

where g0 ; gsz0d. Using relations (4.4) in Eqs. (4.1), we
can find the particular solution for a6

a . Then, using re-
lations (4.4) again, we can regroup the terms to find, for
example for a2

a ,

a2
a szd ­

2b̄kszdexpf2 1
2 ifszdgexpfisb 2 Kdzgn21

a;01uszd
b 2 bresszd

,

(4.5)
where

bresszd ; K 2 b̄gszd 1
1
2

df

dz
. (4.6)
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Using Eq. (4.5) and the corresponding equation for a1
a in

Eqs. (4.2), we find that

b̄21 du
dz

­ figszd 2 k2szdAszdguszd 1 igbkszdvszd ,

b̄21 dv
dz

­ 2figszd 2 k2szdAszdgvszd 2 igbkszduszd , (4.7)

where

Aszd ­ ib̄
X
rp

jn21
rp;01j2

b 2 bresszd
, (4.8)

and we now explicitly show a as consisting of the parame-
ter r labeling the continuous modes [Eq. (2.9)] and an
index p indicating other degeneracies [cf. Eq. (2.11)]. In
writing Eq. (4.8), we have used the fact that

m12
01;rpn21

rp;01 ­ jn21
rp;01j2 (4.9)

[see Eqs. (2.26) and (2.27)].
The sum over r in Eq. (4.8) is really an integral, which

we exhibit below converted [using Eq. (2.9)] to an integral
over b. The b in the denominator of Eq. (4.8) is the
propagation constant associated with the radiation mode
labeled by r. To be able to perform the resulting integral
subject to the boundary condition of outgoing radiation
fields, we replace in the usual way b by b 1 ie, where e

is a small positive number. This gives us the expression

Aszd ­ ib̄
X
p

Z b db

r

jn
21
rp;01j2

b 1 ie 2 bresszd
, (4.10)

which we evaluate using the expression

1
b 1 ie 2 bresszd

! P

"
1

b 2 bresszd

#
2 ipdfb 2 bresszdg ,

(4.11)

where the first term on the right-hand side of relation
(4.11) indicates the principal part. That term makes
a contribution to Aszd, which, when inserted back in
Eqs. (4.7), leads to a small shift in the effective de-
tuning. This term, analogous to the Lamb shift in the
Wigner–Weiskopff analysis, we neglect. It is the Dirac
delta function term in relation (4.11) that leads to the
physically new effect, the decay of the discrete mode am-
plitude on account of radiation, and using it in Eq. (4.10),
we find that

Aszd ­
X
p

√
bp

r
b̄jn21

rp;01j2

!
b­bresszd

;
X
p

Apszd , (4.12)

which is positive and real. Returning to Eqs. (4.7), we
can now identify Aszd as an effective extinction coefficient
for the discrete mode and Apszd as the contribution to it
from the modes of degeneracy index p.

Note that the only dependence of Aszd on position is
through its dependence on bresszd on position. Using
Eqs. (3.5) and (4.3) in Eq. (4.6), we find that
bresszd ­

√
2K 1

df

dz

!
2 fb01 1 b̄gf sszdg . (4.13)

The term in large parentheses on the right-hand side
of Eq. (4.13) is the local wave number of the grating,
taking into account its possible chirp, and the term in
square brackets is the local propagation constant of the
discrete mode, taking into account its modification that is
due to the background induced index. Thus bresszd gives
the local version of the resonance condition sketched in
Fig. 10(b) for the radiation mode, as might be expected.
Field amplitudes uszd and vszd satisfying Eqs. (4.7) no
longer satisfy the energy conservation condition (3.11).
Instead, it is easy to confirm that they satisfy

d
dz

fjuszdj2 2 jvszdj2g ­ 22b̄k2szdAszdfjuszdj2 2 jvszdj2,

(4.14)

showing that the flux of light through the fiber decreases
along the direction of energy propagation on account of
scattering of light out into the radiation modes. Clearly
Eqs. (4.7) and (4.14) describe this loss in a local approxi-
mation, which entered the derivation through the approxi-
mate Eq. (4.5). We turn to a discussion of its range of
validity in Section 7.

5. EXTINCTION COEFFICIENTS
In this section we consider the extinction coefficients A
and Ap of Eq. (4.12); these depend on z only through
the dependence of bres on z, so we will consider them
as a function of b. Returning to Fig. 1, we note that
a bound LP01 mode can be either s- or p-polarized with
respect to the grating, and we can consider coupling to
radiation modes that are either s- or p-polarized with re-
spect to the grating. For a radiation mode of type LPq,
q ­ 0, 1, 2, . . . , then, there are four coefficients to con-
sider: A

j√i
q , as i and j vary over s and p. Using in

Eq. (4.12) the well-known9 expressions for the bound and
radiation modes in the LP approximation, we can put the
extinction coefficients in the form

Aj√i
q ­

4sbad2s rad2qb01

peqJ1
2sk01adGq

jc j√i
q j2, (5.1)

where eq ­ 2 if q ­ 0, and eq ­ 1 otherwise, r is as defined
in Eq. (2.9), and

Gq ; ftas radqJq11stadJqs rad 2 s radq11JqstadJq11s radg2

1 ftas radqJq11stadNqs rad

2 s radq11JqstadNq11s radg2, (5.2)

with

t ;
p

n2
corek2 2 b2 (5.3)

and where Nq is the Bessel function of the second kind
of order q. The terms c

j√i
q appearing in Eq. (5.1) are

integrals of products of Bessel functions over the core.
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(a)

(b)

(c)
Fig. 12. Calculated extinction coefficients for s-polarized
bound-mode to s-polarized LPq radiation-mode coupling. Plots
are made for grating tilt angles of (a) 0±, (b) 5±, and (c) 15±.

Expressions for them are given in Appendix B; in general
they must be evaluated numerically.

In order to provide a better understanding of the char-
acteristics of the extinction coefficients Aq, we plot some
examples in Fig. 12. Figure 12(a) shows the extinction
coefficients for an untilted grating su ­ 0±d for s √ s
polarization coupling. The grating is assumed to have
identical parameters to those used for Figs. 4 and 5,
with 2k ­ 1.0 3 1023. For an untilted grating the only
nonzero coefficients occur for q ­ 0 and 2. In Fig. 12(b)
the coefficients for q ­ 0 through 5 and s √ s coupling
are plotted for a grating with a tilt of u ­ 5±. The im-
portant point to note in this plot is that the q ­ 5 co-
efficient is several orders of magnitude smaller than the
dominant coefficients over the entire wavelength range
investigated, suggesting that a calculation including only
the coefficients for q # 5 provides an accurate estimate of
the radiation-mode coupling strength for a grating with
u ­ 5±. In Fig. 12(c) the coefficients for q ­ 0, 5, 6, and
10 are plotted for a grating with a tilt of u ­ 15±. The plot
shows that including coefficients as high as q ­ 10 is not
necessary when u ­ 15±, but by including only q # 5, one
somewhat underestimates the total coupling loss at wave-
lengths well below the design wavelength, as the q ­ 6
coefficient is nearly as large as the dominant coefficients.
At even higher tilt angles larger q values should be in-
cluded for an accurate representation of the coupling loss.

We note that for all of the tilt angles discussed here
the p √ p extinction coefficients are similar to the s √ s
coefficients but with slightly different spectral shape and
slightly smaller magnitude. A more careful comparison
between these two kinds of coupling will be made in
Section 6, wherein we look at the calculated transmis-
sion loss spectrum. The s √ p and p √ s coefficients
are smaller than either the s √ s or p √ p coefficients
by several orders of magnitude. Hence we neglect these
dissimilar polarization extinction coefficients in the trans-
mission loss calculations of the next section.

6. FIBER SPECTRA
In this section we compare experimental results with
theoretical calculations based on the coupled-mode equa-
tions (4.7), using extinction coefficients Aszd evaluated as
discussed in the previous section.

These equations must be solved numerically through
the fiber profile. The calculation is more complicated
than that described in Section 3 because we must evalu-
ate the integrals in Appendix B at each point in the fiber
profile to calculate Aszd. To simplify the computations,
we make a number of approximations that do not signifi-
cantly affect the results. First, in calculating the con-
tributions to Aszd, we neglect the contributions from the
z component of the bound mode and do not calculate
the depolarized scattering, calculating either s √ s or
p √ p scattering only. The first approximation elimi-
nates the terms in Eqs. (B2) and (B4) involving the factor
k01ryb01b, so there are only three integrals left to evalu-
ate. In evaluating these integrals, we approximate k01a
by its value at the design wavelength. Then, once k01a
and 2Ka tan u are specified, the three integrals must be
evaluated only as a function of ta; this can be done before
the integration of the coupled-mode equations through the
grating profile, and the values of Aszd then essentially
read from a table as the integration is performed. As
in Section 3, we evaluate gb and gf at the design wave-
length, and, although in expression (3.5) for d we make
the approximation

d ø
b01 2 K

K
,
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(a)

(b)
Fig. 13. Calculated transmission loss spectra versus grating tilt
angle for s-polarized bound-mode to s-polarized bound-mode and
radiation-mode coupling, where all LPq radiation modes for q # 5
have been included. The waterfall of spectra is plotted in both
(a) ascending and (b) descending order of tilt angle.

we do evaluate b01 at each frequency. Over the range of
frequencies and grating angles in which we are interested
these approximations are certainly adequate and consid-
erably shorten the calculation.

Figure 13 shows calculated transmission spectra (plot-
ted as 1 minus transmission for viewing clarity) versus
grating tilt angle for s-polarized light, where both Bragg
reflection and bound-mode to radiation-mode coupling
loss are included. The fiber and grating parameters as-
sumed for this plot are identical to those used for Figs. 4
and 5, and the grating amplitude is 2k ­ 1.0 3 1023. The
waterfall of spectra is plotted in both (a) ascending and
(b) descending order of tilt angle. Note that the longest
wavelength loss peak in each spectrum is due almost
exclusively to Bragg reflection loss (cf. Fig. 5), whereas
the remainder of each spectrum is due to radiation-mode
coupling loss; however, the two contributions overlap in
the vicinity of the design wavelength (1550 nm). For
this calculation the summation in Eq. (4.12) included ra-
diation modes with azimuthal quantum numbers ranging
from 0 to 5; for a given bound-mode polarization (s in
this case), only coupling to the like-polarized radiation
mode was considered. We observed that the spectra
do not change drastically when higher-azimuthal-order
radiation modes and the dissimilar radiation-mode polar-
ization are included. The changes are insignificant for
the smaller tilt angles su , 15±d. Figure 14 shows a simi-
lar calculation for the case of p-polarized bound-mode to
p-polarized radiation-mode coupling.

In contrast to the case of Bragg reflection from a tilted
grating (Section 3), for bound-mode coupling to radiation
modes the s- and p-polarized cases behave quite differ-
ently—in all cases the p-polarized bound mode sees less
radiation-mode coupling loss than the s-polarized mode.
To examine this difference more closely, in Fig. 15 we plot
the calculated absolute minimum transmission (maxi-
mum loss) versus grating tilt angle for both s-polarized
(solid) and p-polarized (dotted) bound-mode to radiation-
mode coupling. For this fiber the two polarizations scat-
ter quite similarly for tilt angles less than approximately
6.5±; above this tilt angle p polarization begins to scatter
less efficiently than s polarization. The origin of the kink
in these curves at a 6.5± tilt angle is clear from Figs. 13(b)
and 14(b)—for tilt angles smaller than 6.5± the mini-
mum transmission derives from the narrow peak on the
long-wavelength side of the radiation-mode loss spectrum;
for larger tilt angles the minimum transmission is deter-
mined by the broader peak at shorter wavelengths. The
different rates of change of transmission with tilt angle
associated with these two peaks thus give rise to the kinks
in Fig. 15. We note that in the vicinity of 6.5± tilt angle

(a)

(b)
Fig. 14. Same as Fig. 13, but for p polarization.
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Fig. 15. Calculated absolute minimum transmission (maximum
loss) that is due solely to radiation-mode coupling for s-polarized
bound-mode to s-polarized radiation-mode coupling (solid) and
for p-polarized coupling (dashed).

for this fiber the narrow peak on the long-wavelength side
is caused by scattering into even-azimuthal-order radia-
tion modes, whereas the broader peak results from scat-
tering into odd-azimuthal-order radiation modes.

For a comparison of the calculated results with experi-
mental results the transmission spectra of the same set
of gratings described in Section 3 were measured over the
wavelength range of interest for bound-mode to radiation-
mode coupling. For these measurements the bare (un-
coated) fiber was immersed in index-matching fluid with
a cladding-fluid index difference of less than 0.01. This
difference was suitable to remove any detectable evidence
of resonances associated with coupling between the LP01

bound mode and cladding modes. When glycerin was
used for index matching, the transmission curves exhib-
ited a slight ripple (less than 10% of the transmission)
at the longest wavelengths, caused by non-total-internal-
reflection Fresnel reflections of the radiation modes off the
cladding–glycerin interface. The ripple increased some-
what when the grating region of the bare fiber was re-
coated with a higher index uv-curable polymer coating.

The measured transmission spectra are plotted in
Fig. 16(a), where wavelength detuning is defined relative
to the measured design wavelength. For convenience the
theoretical predictions are replotted in Fig. 16(b) over the
range of tilt angles experimentally measured. There is
reasonably good agreement between the measured and
calculated spectra. As pointed out in Section 3, because
of variations in actual uv-induced index change and index
modulation resulting from changes in the alignment from
grating to grating, the most accurate comparison of the
spectra in Fig. 16 with each other and with calculations
should be based on spectral shape rather than actual
values of transmission. For example, Fig. 17 shows that
there is good agreement of the measured wavelengths of
minimum transmission (circles) versus tilt angle with the
calculated wavelengths (line). Furthermore, it is com-
forting to note that the peak responsible for maximum
loss switches from the narrow, long-wavelength peak in
the 6± tilt spectrum to the broader, shorter-wavelength
peak at 7± tilt, just as predicted by the theory. However,
the measured spectra in Fig. 16 tend to exhibit a larger
ratio of loss in the side peaks to that in the main peak
[cf. Figs. 13, 14, and 16(b)]. Furthermore, the measured
spectra for the highest tilt angles (13±–15±) appear to

(a)

(b)
Fig. 16. (a) Experimentally measured transmission loss spectra
versus grating tilt angle for gratings written with tilt angles of
0±–15±, (b) corresponding calculated transmission loss spectra,
where loss that is due to Bragg scattering has been excluded.

Fig. 17. Measured wavelength of minimum transmission
(circles) and calculated wavelength of minimum transmission
(solid) versus tilt angle, where loss that is due to Bragg scattering
has been excluded.
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have one more peak over the wavelength range mea-
sured than predicted by the theory [cf. Figs. 13(b), 14(b),
and 16(b)].

7. CONCLUSIONS
Throughout the preceding sections the agreement be-
tween theory and experiment has been not only quali-
tatively good but in many cases quantitatively good as
well. In this section we review the approximations that
enter the theoretical description and the difficulties that
affect the experimental results; the goal is not only to un-
cover the sources of the discrepancies in this work but also
to identify sources of discrepancies that would plague ex-
periments in other regions of parameter space.

Of the theoretical approximations, many seem clearly
adequate. The small uv-induced changes in the index of
refraction involved here completely justify the approxi-
mation of Eqs. (2.15) by relation (2.16), for example.
Likewise, one would naively expect that the neglect of
the higher-order Fourier components [discussed after
Eq. (2.18) and before Eqs. (3.2)] is harmless; an indication
of how large the induced index change would have to be
to necessitate a more detailed calculation can be gleaned
from the analysis presented by Sipe et al. in Ref. 10.

That analysis, however, and others like it rely on treat-
ing the propagating fields as essentially one dimensional
in nature. A qualitatively different effect arises when
the index changes in the core, although leading to small
grating amplitudes, are large enough that the average
core index change, although small, allows the fiber to
support a new bound mode. Then the expansion in
Eq. (2.11), although mathematically correct in that the
modes of the unperturbed fiber form an essentially com-
plete set, is no longer physically reasonable in that the
approximations made following that expansion are no
longer appropriate. This is a matter to which we plan to
turn in a future paper; but with respect to this work it is
irrelevant, since the index changes are not large enough
to lead to new bound modes. We note in passing that
leaky modes are of course linear combinations of radiation
modes9 and as such are implicit in our calculation.

Turning specifically to the radiation-mode coupling, we
note that the description presented here of the extinction
of a bound mode as a result of that coupling is within
a local approximation [see the comment after Eq. (4.14)];
in the language of the Wigner–Weisskopf calculation the
extinction coefficient is essentially a local Fermi’s golden
rule result. The validity of this calculation then follows
from the usual discussion of the validity of Fermi’s golden
rule.15 The length L over which the grating parameters
change significantly must satisfy L . ,1yDb, where Db

is the wave-number range over which nonnegligible quan-
tities sbpyrdb̄jn21

rp;01j2 vary significantly from their values
at bres [see Eq. (4.12)]. For the grating and fiber parame-
ters involved in the work of this paper this condition is
well satisfied.

A more general approximation is that of using the LP
mode description with the assumption of a step-index pro-
file. Although we have not made a detailed study of limi-
tations that are due to the LP mode approximation, for
the small core-cladding difference in the Corning Flexcore
fiber [see the discussion after Eq. (3.10)] we feel that this
is hardly the most serious limitation of this work. It is
true that we neglect the z components of the bound-mode
field; but because the z components of the radiation-mode
fields are kept, that approximation should be valid for the
fiber considered here, regardless of tilt angle and detun-
ing from the design wavelength.

The step-index profile assumption is perhaps more se-
rious; although we have not made a detailed study of this
assumption, simple arguments indicate that if it limits
the accuracy of our theoretical predictions, it is at the
larger detunings from Bragg scattering. This may be one
reason for the slight disagreement between theory and ex-
periment in the shape and the magnitude of the spectra in
Fig. 16 for wavelengths well below the design wavelength.

Another possible culprit responsible for this slight dis-
agreement at large detunings from the design wavelength
is the neglect of radiation-mode azimuthal orders q . 5
in the calculations presented in Section 6. However, a
set of calculations not presented here indicates that the
influence of radiation-mode azimuthal orders q . 5 is
qualitatively significant only for tilt angles greater than
approximately 15±; such large tilt angles are not consid-
ered here experimentally but might be of interest for some
applications.

Finally, we discuss possible experimental causes of dis-
agreement between calculated and measured results for
both Bragg scattering and radiation-mode loss. A main
limitation of the experimental accuracy is the fact that
the entire interferometer alignment was changed between
the writing of each grating. We could not just rotate the
fiber in 1± increments, because that would lead to design
wavelengths that vary over a range of ,150 nm for tilt
angles varying from 0± to 15±. Therefore, the zero-tilt
design wavelength (i.e., the uv beam intersection angle)
was changed after each exposure, so that the actual de-
sign wavelength would be roughly 1550 nm for all of the
gratings, regardless of tilt angle. After an alteration of
the interferometer as significant as this, a recalibration of
exposure conditions and wavelength is usually required to
yield reproducible results. Recalibration entails writing
multiple gratings, renormalizing exposure time and in-
tensity, and adjusting the uv writing wavelength. Since
such a recalibration was not done between each tile expo-
sure, two important effects occur, as detailed below.

First, the uv-induced index change is likely not the
same for all of the measured gratings, as is certainly
assumed in the theoretical plots. A large variation in
induced index change would occur on account of align-
ment variations if simply equal exposure times were used.
Therefore an attempt was made to attain more equal in-
dex change through real-time monitoring of the trans-
mission spectra during growth and accordingly through
adjusting the exposure times. Nevertheless, the index
change still probably has a substantial variation from
grating to grating, and we feel that this variation is
largely responsible for the disagreement between theory
and experiment. This disagreement is particularly no-
ticeable in the reflectivity spectra (Figs. 7 and 8).

Second, the grating fringe visibility (the ratio 2kys)
is likely not the same for all of the measured gratings;
perfect visibility s2kys ­ 1d is assumed for all of the calcu-
lations. Thermal and vibrational instabilities in the in-
terferometer cause this variation. The settling time and
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the environmental conditions varied before the writing of
each grating, giving rise to a variation in the visibility.
A rough estimate is that the visibility could vary by as
much as 610%.

In addition to the experimental grating-to-grating
variations just described, it is also possible that the ge-
ometry used to provide the grating tilt could explain some
of the discrepancy between the theory and the measure-
ments. One explanation might be that the focal planes
of the two uv beams are not parallel to the fiber axis
for a tilted grating. However, even for a 30± grating tilt
angle (for which uext ­ 50± and aext ­ 20±), the fiber does
not deviate from the focal plane by more than 10% of the
Rayleigh range for the beam size and the cylindrical lens
used. This deviation implies an intensity variation from
that at the focal plane of less than 1% and a corresponding
negligible variation in fringe visibility of less than 1024.

A second, more plausible geometric explanation of the
discrepancy might be that the fringe visibility of the in-
terference pattern formed by the intersection of the two
nonuniform (Gaussian) uv beams varies along an axis
tilted with respect to the normal to the bisector of the
two beams. If the two beams have equal intensity, the
visibility is perfect s­1d at the center of the grating but
then diminishes away from the center along the tilted
fiber axis as a result of the different projected widths
of the two Gaussian beams on the fiber. One beam will
have a projected width of FWHMycossaext 1 uextd, and the
other will have a width of FWHMycossaext 2 uextd, where
FWHM is the transverse full width at half-maximum of
the beam. Again, when we consider the severe case of
u ­ 30±, the visibility will drop only by approximately 3%
a distance of FWHMy2 away from the grating center along
the fiber axis. Nevertheless, the visibility will drop more
rapidly farther out, giving rise to a non-Gaussian pro-
file of the index modulation parameter 2k and an effec-
tively shorter grating length than would occur for zero tilt.
These two effects were observed and are discussed in Sec-
tion 3, wherein the experimental and theoretical reflection
spectra are compared for a grating with a 5± tilt angle.
It is not clear that this geometric explanation is a pri-
mary cause of theory–measurement discrepancy, though.

In summary, then, although there are theoretical lim-
itations of the description that we have presented that
could affect experiments for other grating and fiber pa-
rameters, the main source of disagreement between the-
ory and experiment in the present study appears to be
the experimental difficulty in controlling the parameters
of the gratings actually written. Nevertheless, the good
qualitative agreement obtained is evidence that the theo-
retical development presented here is a valuable tool for
the design of fiber-grating devices that utilize radiation-
mode coupling loss for filtering applications.

APPENDIX A
In this appendix we sketch the derivation of the re-
sult (2.10)–(2.12) for the field generated by an arbitrary
source polarization P sRd. To begin, we find it useful to
have an explicit notation for the portions of the electro-
magnetic field consisting of modes going to the right s1zd
and the left s2zd in an ideal fiber in the absence of any
such source polarization. We put
F 6sx, y, zd ­

0BBBBB@
E6zsx, y, zd
H 6zsx, y, zd
E6tsx, y, zd
H6tsx, y, zd

1CCCCCA , (A1)

with

F 6sx, y, zd ­
X
ap

ã6
ap f 6

apsx, ydexps6ibazd

;
X
mp

ã6
mp f 6

mpsx, ydexps6ibmzd

1
X
p

Z
dr ã6

rp f 6
rpsx, ydexpf6ibs rdzg ,

(A2)

where the ã6
ap are expansion coefficients. The electric

and magnetic fields appearing in Eq. (A1) satisfy the
Maxwell equations

= 3 E6sRd 2 ivm0H6sRd ­ 0 ,

= 3 H6sRd 1 ive0n0
2sx, ydE6sRd ­ 0 , (A3)

since they consist of ideal fiber modes.
Now consider the introduction of a source polarization,

but initially one confined to lie only in the z ­ z0 plane,

PsRd ­ psx, yddsz 2 z0 d ,

psx, yd ­ ptsx, yd 1 ẑpzsx, yd , (A4)

where we use the vector component notation of Eq. (2.2).
With this expression for the source polarization the
Maxwell equations now take the form

= 3 EsRd 2 ivm0HsRd ­ 0 ,

= 3 HsRd 1 ive0n0
2sx, ydEsRd ­ 2ivPsRd . (A5)

Since there is no source polarization to the left or the right
of z ­ z0, we are led to seek a solution of the form

EsRd ­ usz 2 z0 dE1sRd 1 usz0 2 zdE2sRd

1 dsz 2 z0 dẑEdsx, yd ,

HsRd ­ usz 2 z0 dH1sRd 1 usz0 2 zdH2sRd , (A6)

where uszd is the unit step function, vanishing for z , 0
and equal to unity for z . 0; the expansion coefficients
[see Eq. (A2)] and Edsx, yd (which, as will presently be-
come clear, is a required part of the solution) are to
be determined. Substituting Eqs. (A4) and (A6) into the
Maxwell equations (A5), using

=usz 2 z0 d ­ ẑdsz 2 z0 d ,

=dsz 2 z0 d 3 ẑ ­ 0 , (A7)

and Eqs. (A3), we find we must have

ẑ 3 fE1sx, y, z0 d 2 E2sx, y, z0 dg

2ẑ 3 =Edsx, yd ­ 0 ,

ẑ 3 fH1sx, y, z0 d 2 H2sx, y, z0 dg

1 ive0n0
2sx, ydẑEdsx, yd ­ 2ivpsx, yd . (A8)
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These are the discontinuity conditions imposed by the
source polarization (A4). From the z component of the
second of Eqs. (A8) we find that

Edsx, yd ­
2pzsx, yd
e0n0

2sx, yd
. (A9)

Now we dot the first of Eqs. (A8) into the transverse com-
ponent of the magnetic field of the sa, pd mode and the
second of those equations into the associated transverse
component of the electric field. Interchanging the dot
and cross products and integrating over the x–y plane,
we find, using the expansion (A2) and the mode orthog-
onality conditions (2.6)–(2.8), that the mode expansion
coefficients must satisfy

1
2

Papfã1
ap expsibaz0 d 1 ã2

ap exps2ibaz0 dg

­ iv
Z

ptsx, yd ? etp
apsx, ydds ,

1
2

Papfã1
ap expsibaz0 d 2 ã2

ap exps2ibaz0 dg

­ iv
Z

pzsx, ydezp
apsx, ydds . (A10)

The first and second of these equations follow, respec-
tively, from the first and second of Eqs. (A8). By adding
and subtracting Eqs. (A10), we can immediately recover
expressions for the mode expansion coefficients,

ã1
ap ­

iv

Pap
exps2ibaz0 d

Z
psx, yd ? Ẽ1p

ap sx, ydds ,

ã2
ap ­

iv

Pap
expsibaz0 d

Z
psx, yd ? Ẽ1p

ap sx, ydds , (A11)

where we have used the mode expressions (2.4) and (2.5)
to simplify the right-hand sides of Eqs. (A11).

With these results in hand we can turn to the problem
of a general source polarization, which can be written in
the form

PsRd ­ Psx, y, zd ­
Z

Psx, y, z0 ddsz 2 z0 ddz0. (A12)

This displays such a general source polarization as just
a superposition of sources of the form (A4) for different
z0; thus the solution follows immediately from what we
have already done by superposition. One part of the field
is given by Eq. (2.10) [cf. Eq. (A9)], and the rest can be
written as a superposition of modes of the ideal fiber (2.11)
but with amplitudes given by

ã1
apszd ­

iv

Pap

Z z

2`

Z
exps2ibaz0 dPsx, y, z0 d

? E1p
ap sx, yddsdz0,

ã2
apszd ­

iv

Pap

Z `

z

Z
expsibaz0 dPsx, y, z0 d

? E2p
ap sx, yddsdz0, (A13)

[cf. Eqs. A11)], with the inner integrals ranging over the
x–y plane. Equations (2.12) are then obtained by differ-
entiation of Eqs. (A13).
APPENDIX B
In this appendix we give expressions for the coefficients
c

j√i
q appearing in Eq. (5.1). They are all of the form

c j√i
q ­

1
2sk01ad2

Z k01a

0
I j√i

q sudu du , (B1)

where

I s√s
q sud ­ 2

√
ncorek

b
1 1

!
JqsTudJ0sudJqsVud

1

√
ncorek

b
2 1

!
fJq12sTudJ0sudJq12sVud

1 Jq22sTudJ0sudJq22sVudg

2
k01r

b01b
hJq11sTudJ1sudfJqsVud 1 Jq12sVudg

2 Jq21sTudJ1sudfJqsVud 1 Jq22sVudgj (B2)

is the integrand involved in calculating the coupling of a
LP01 mode that is s-polarized with respect to the grating
to an s-polarized LPq radiation mode. Similarly

Ip√s
q sud ­

√
ncorek

b
2 1

!
fJq12sTudJ0sudJq12sVud

2 Jq22sTudJ0sudJq22sVudg

2
k01r

b01b
hJq11sTudJ1sudfJqsVud 1 Jq12sVudg

1 Jq21sTudJ1sudfJqsVud 1 Jq22sVudgj , (B3)

I p√p
q sud ­ 2

√
ncorek

b
1 1

!
JqsTudJ0sudJqsVud

2

√
ncorek

b
2 1

!
fJq12sTudJ0sudJq12sVud

1 Jq22sTudJ0sudJq22sVudg

2
k01r

b01b
hJq11sTudJ1sudfJqsVud 2 Jq12sVudg

2 Jq21sTudJ1sudfJqsVud 2 Jq22sVudgj , (B4)

I s√p
q sud ­

√
ncorek

b
2 1

!
fJq12sTudJ0sudJq12sVud

2 Jq22sTudJ0sudJq22sVudg

1
k01r

b01b
hJq11sTudJ1sudfJqsVud 2 Jq12sVudg

1 Jq21sTudJ1sudfJqsVud 2 Jq22sVudgj . (B5)

In these expressions V (in agreement with the definition
in Section 3) and T are given by

V ­
2K tan u

k01

, T ­
t

k01

. (B6)
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