A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
A Sparse Deep Transfer Learning Model and Its Application for Smart Agriculture
2021
Wireless Communications and Mobile Computing
The introduction of deep transfer learning (DTL) further reduces the requirement of data and expert knowledge in various uses of applications, helping DNN-based models effectively reuse information. However, it often transfers all parameters from the source network that might be useful to the task. The redundant trainable parameters restrict DTL in low-computing-power devices and edge computing, while small effective networks with fewer parameters have difficulty transferring knowledge due to
doi:10.1155/2021/9957067
fatcat:wjowimah2zhmbnavz5vj6racny